Skip to content

Instantly share code, notes, and snippets.

@ac00std ac00std/sze_R
Last active Jan 8, 2018

Embed
What would you like to do?
sze_janken
###データの読み込み
sze_row=read.csv("2017sze.csv",header = T)
sze=sze_row[,-9]
#1992年~2016年までを学習用、2017年分をテスト用とする
train=c(1:1254)
test=c(1255:1302)
###seedはサザエさん(3383)とする
set.seed(3383)
###線形SVM
library(e1071)
sze.svm=svm(X~.,sze[train,],method = "C-classification",
kernel = "linear",
cost = 2.5 )
test.svm=predict(sze.svm, sze[test,])
svm.tab=table(sze[test,1],test.svm)
svm.tab
sum(svm.tab[row(svm.tab)==col(svm.tab)])/sum(svm.tab) #識別率
###RBFカーネルを用いたSVM
#パラメータチューニング
library(e1071)
gammaRange = 10^(0:3)
costRange = 10^(0:3)
t <- tune.svm(X~.,data=sze, gamma=gammaRange, cost=costRange,
tunecontrol = tune.control(sampling="cross", cross=4))
cat("- best parameters:\n")
cat("gamma =", t$best.parameters$gamma, "; cost =", t$best.parameters$cost, ";\n")
cat("accuracy:", 100 - t$best.performance * 100, "%\n\n")
plot(t, transform.x=log10, transform.y=log10,zlim=c(0,1))
#予測
leaf.rbf_svm=svm(X~.,sze[train,],method = "C-classification",
kernel = "radial",
cost = 1,gamma=1 )
test.rbf_svm=predict(leaf.rbf_svm, sze[test,])
rbf_svm.tab=table(sze[test,1],test.rbf_svm)
rbf_svm.tab
sum(rbf_svm.tab[row(rbf_svm.tab)==col(rbf_svm.tab)])/sum(rbf_svm.tab) #識別率
###randomforest
library(randomForest)
#パラメータチューニング
tuneRF(sze[train,-1],sze[train,1],doBest=T)
sze.rf=randomForest(sze[train,-1],sze[train,1],mtry=1)
#予測
test.rf = predict(sze.rf, sze[test,-1])
rf.tab=table(sze[test,1],test.rf)
rf.tab
sum(rf.tab[row(rf.tab)==col(rf.tab)])/sum(rf.tab) #識別率
###decision tree
library(rpart)
library(partykit)
#Making decision tree
result<-rpart(X~., data = sze[train,],cp=0.01)
dt=predict(result,sze[test,],type = "class")
dt.tab=table(sze[test,1],dt)
dt.tab
sum(dt.tab[row(dt.tab)==col(dt.tab)])/sum(dt.tab) #識別率
#Plot result
plot(as.party(result))
printcp(result)
plotcp(result)
###naive bayes
library(e1071)
sze.nb=naiveBayes(X~.,sze[train,])
test.nb=predict(sze.nb,sze[test,])
nb.tab=table(sze[test,1],test.nb)
nb.tab
sum(nb.tab[row(nb.tab)==col(nb.tab)])/sum(nb.tab) #識別率
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.