Last active
February 24, 2021 13:24
-
-
Save acarril/270f0fd4e5ae8fff039216c3a9aad764 to your computer and use it in GitHub Desktop.
ECO539B - Homework 3
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
setwd("/Users/alvaro/Dropbox/Princeton/2021-Spring/539B/03-IV/hw03") | |
### Load libraries | |
library(tidyverse) | |
library(haven) # import .dta | |
library(sandwich) # vcovHC() | |
library(clubSandwich) # vcovCR() | |
library(dfadjust) | |
library(progress) | |
library(brew) | |
### Read and prepare data | |
fam <- read_dta("famine.dta") | |
fam <- fam %>% | |
mutate( | |
lgrain_pred_fam = lgrain_pred * famine, | |
lgrain_pred_invfam = lgrain_pred * (1 - famine) | |
) | |
fam_sub <- filter(fam, year >= 1953 & year <= 1965) | |
### Compute main regression and extract betas | |
reg <- lm(ldeaths ~ lgrain_pred_fam + lgrain_pred_invfam + ltotpop + lurbpop + factor(year), data = fam) | |
betas <- coef(reg)[2:3] | |
reg_sub <- lm(ldeaths ~ lgrain_pred_fam + lgrain_pred_invfam + ltotpop + lurbpop + factor(year), data = fam_sub) | |
betas_sub <- coef(reg_sub)[2:3] | |
### (a) No clustering | |
# (i), (ii) HC standard errors | |
sigma_hc0 <- diag(sqrt(vcovHC(reg, type = "HC0")[2:3, 2:3])) | |
sigma_hc1 <- diag(sqrt(vcovHC(reg, type = "HC1")[2:3, 2:3])) | |
sigma_hc2 <- diag(sqrt(vcovHC(reg, type = "HC2")[2:3, 2:3])) | |
sigma_hc0_sub <- diag(sqrt(vcovHC(reg_sub, type = "HC0")[2:3, 2:3])) | |
sigma_hc1_sub <- diag(sqrt(vcovHC(reg_sub, type = "HC1")[2:3, 2:3])) | |
sigma_hc2_sub <- diag(sqrt(vcovHC(reg_sub, type = "HC2")[2:3, 2:3])) | |
### (b) With clustering | |
# (i), (ii) CR standard errors | |
sigma_cr0 <- diag(sqrt(vcovCR(reg, cluster = fam$prov, type = "CR0")[2:3, 2:3])) | |
sigma_cr1 <- diag(sqrt(vcovCR(reg, cluster = fam$prov, type = "CR1")[2:3, 2:3])) | |
sigma_cr2 <- diag(sqrt(vcovCR(reg, cluster = fam$prov, type = "CR2")[2:3, 2:3])) | |
sigma_cr0_sub <- diag(sqrt(vcovCR(reg_sub, cluster = fam_sub$prov, type = "CR0")[2:3, 2:3])) | |
sigma_cr1_sub <- diag(sqrt(vcovCR(reg_sub, cluster = fam_sub$prov, type = "CR1")[2:3, 2:3])) | |
sigma_cr2_sub <- diag(sqrt(vcovCR(reg_sub, cluster = fam_sub$prov, type = "CR2")[2:3, 2:3])) | |
### (iii) Effective standard errors | |
# to compute the effective degrees of freedom, we use the package by Imbens and Kolesar | |
# (a) No clustering | |
reg_adj <- dfadjustSE(reg, IK = F) | |
df_eff <- reg_adj$coefficients[2:3,5] | |
sigma_eff <- sigma_hc2 * qt(0.975, df = df_eff) / 1.96 | |
reg_adj_sub <- dfadjustSE(reg_sub, IK = F) | |
df_eff_sub <- reg_adj_sub$coefficients[2:3,5] | |
sigma_eff_sub <- sigma_hc2_sub * qt(0.975, df = df_eff_sub) / 1.96 | |
# (b) With clustering | |
reg_cl_adj <- dfadjustSE(reg, clustervar = as.factor(fam$prov), IK = F) | |
df_cl_eff <- reg_cl_adj$coefficients[2:3,5] | |
sigma_cl_eff <- sigma_cr2 * qt(0.975, df = df_cl_eff) / 1.96 | |
reg_cl_adj_sub <- dfadjustSE(reg_sub, clustervar = as.factor(fam_sub$prov), IK = F) | |
df_cl_eff_sub <- reg_cl_adj_sub$coefficients[2:3,5] | |
sigma_cl_eff_sub <- sigma_cr2_sub * qt(0.975, df = df_cl_eff_sub) / 1.96 | |
### (iv), (v) Boostrap | |
B <- 50000 | |
N <- dim(fam)[1] | |
N_sub <- dim(fam_sub)[1] | |
provs <- unique(fam$prov) | |
provs_sub <- unique(fam_sub$prov) | |
Nclusters <- length(provs) | |
Nclusters_sub <- length(provs_sub) | |
bs_estimates <- matrix(data = NA, nrow = B, ncol = 2) | |
bs_estimates_sub <- matrix(data = NA, nrow = B, ncol = 2) | |
bs_tstats <- matrix(data = NA, nrow = B, ncol = 2) | |
bs_tstats_sub <- matrix(data = NA, nrow = B, ncol = 2) | |
bs_estimates_c <- matrix(data = NA, nrow = B, ncol = 2) | |
bs_tstats_c <- matrix(data = NA, nrow = B, ncol = 2) | |
bs_estimates_c_sub <- matrix(data = NA, nrow = B, ncol = 2) | |
bs_tstats_c_sub <- matrix(data = NA, nrow = B, ncol = 2) | |
pb <- progress_bar$new(total = B, format = "[:bar] :current/:total (:percent)") | |
for (b in 1:B){ | |
pb$tick() | |
# (a) No clustering | |
dat <- sample_n(fam, size = N, replace = TRUE) | |
dat_sub <- sample_n(fam_sub, size = N_sub, replace = TRUE) | |
bs_reg <- lm(ldeaths ~ lgrain_pred_fam + lgrain_pred_invfam + ltotpop + lurbpop + factor(year), data = dat) | |
bs_reg_sub <- lm(ldeaths ~ lgrain_pred_fam + lgrain_pred_invfam + ltotpop + lurbpop + factor(year), data = dat_sub) | |
for (c in 2:3){ | |
bs_estimates[b, c-1] <- coef(bs_reg)[c] | |
bs_estimates_sub[b, c-1] <- coef(bs_reg_sub)[c] | |
bs_tstats[b, c-1] <- sqrt(N) * (coef(bs_reg)[c] - coef(reg)[c]) / sqrt(vcovHC(bs_reg, type = "HC1")[c, c]) | |
bs_tstats_sub[b, c-1] <- sqrt(N_sub) * (coef(bs_reg_sub)[c] - coef(reg_sub)[c]) / sqrt(vcovHC(bs_reg_sub, type = "HC1")[c,c]) | |
} | |
# (b) With clustering | |
provb <- sample(provs, size = Nclusters, replace = T) | |
provb_sub <- sample(provs_sub, size = Nclusters_sub, replace = T) | |
dat <- filter(fam, prov %in% provb) | |
dat_sub <- filter(fam_sub, prov %in% provb_sub) | |
bs_reg <- lm(ldeaths ~ lgrain_pred_fam + lgrain_pred_invfam + ltotpop + lurbpop + factor(year), data = dat) | |
bs_reg_sub <- lm(ldeaths ~ lgrain_pred_fam + lgrain_pred_invfam + ltotpop + lurbpop + factor(year), data = dat_sub) | |
for (c in 2:3){ | |
bs_estimates_c [b, c-1] <- coef(bs_reg)[c] | |
bs_estimates_c_sub[b, c-1] <- coef(bs_reg_sub)[c] | |
bs_tstats_c [b, c-1] <- sqrt(N) * (coef(bs_reg)[c] - coef(reg)[c]) / sqrt(vcovCR(bs_reg, cluster = dat$prov, type = "CR1")[c,c]) | |
bs_tstats_c_sub [b, c-1] <- sqrt(N_sub) * (coef(bs_reg_sub)[c] - coef(reg_sub)[c]) / sqrt(vcovCR(bs_reg_sub, cluster = dat_sub$prov, type = "CR1")[c, c]) | |
} | |
} | |
# compute se (no cluster) | |
bs_sigma <- c(sd(bs_estimates[, 1]), sd(bs_estimates[, 2])) | |
names(bs_sigma) <- names(coef(reg)[2:3]) | |
bs_sigma_sub <- c(sd(bs_estimates_sub[, 1]), sd(bs_estimates_sub[, 2])) | |
names(bs_sigma_sub) <- names(coef(reg_sub)[2:3]) | |
# compute se (cluster) | |
bs_sigma_cl <- c(sd(bs_estimates_c[,1]), sd(bs_estimates_c[,2])) | |
names(bs_sigma_cl) <- names(coef(reg)[2:3]) | |
bs_sigma_cl_sub <- c(sd(bs_estimates_c_sub[,1]), sd(bs_estimates_c_sub[,2])) | |
names(bs_sigma_cl_sub) <- names(coef(reg_sub)[2:3]) | |
# confidence intervals | |
lb_all <- numeric(2) | |
ub_all <- numeric(2) | |
lb_sub <- numeric(2) | |
ub_sub <- numeric(2) | |
lb_all_c <- numeric(2) | |
ub_all_c <- numeric(2) | |
lb_sub_c <- numeric(2) | |
ub_sub_c <- numeric(2) | |
for (b in 1:2){ | |
lb_all [b] = betas[b] - quantile(bs_tstats[,b], probs = 1 - 0.05 / 2) * sigma_hc1[b] / sqrt(N) | |
ub_all [b] = betas[b] - quantile(bs_tstats[,b], probs = 0.05 / 2) * sigma_hc1[b] / sqrt(N) | |
lb_sub [b] = betas_sub[b] - quantile(bs_tstats_sub[,b], probs = 1 - 0.05 / 2) * sigma_hc1_sub[b] / sqrt(N_sub) | |
ub_sub [b] = betas_sub[b] - quantile(bs_tstats_sub[,b], probs = 0.05 / 2) * sigma_hc1_sub[b] / sqrt(N_sub) | |
lb_all_c[b] = betas[b] - quantile(bs_tstats_c[,b], probs = 1 - 0.05 / 2) * sigma_cr1[b] / sqrt(N) | |
ub_all_c[b] = betas[b] - quantile(bs_tstats_c[,b], probs = 0.05 / 2) * sigma_cr1[b] / sqrt(N) | |
lb_sub_c[b] = betas_sub[b] - quantile(bs_tstats_c_sub[,b], probs = 1 - 0.05 / 2) * sigma_cr1_sub[b] / sqrt(N_sub) | |
ub_sub_c[b] = betas_sub[b] - quantile(bs_tstats_c_sub[,b], probs = 0.05 / 2) * sigma_cr1_sub[b] / sqrt(N_sub) | |
} | |
# sink(file = "standard_errors.tex") | |
# brew("SE_template.brew") | |
# sink(file = NULL) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment