Created
January 27, 2014 11:41
-
-
Save acroy/8647126 to your computer and use it in GitHub Desktop.
example for symplectic integration with ODE.verlet : pendulum
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# symplectic integration | |
## pedulum | |
using Winston | |
using ODE | |
# rhs | |
function pendulum(t, q) | |
return -sin(q) | |
end | |
# dim.less energy: epsilon = v^2/2 + 1 - cos(x) | |
# epsilon < 2: oscillations | |
# epsilon > 2: rotations | |
epsilon = 1. | |
v0 = 0. | |
x0 = acos(1. + v0^2/2 - epsilon) | |
t, x, v = ODE.verlet_fixed(pendulum, linspace(0.,4pi,11), x0, v0) | |
tab = Table(2, 1) | |
# upper panel: total energy vs time | |
p1 = FramedPlot(ylabel="energy", xlabel="time") | |
tab[1,1] = p1 | |
add(p1, Curve( t, v.*v/2 + 1. - cos(x), color="blue")) | |
add(p1, Curve([0, 2pi], [v0^2/2 + 1 - cos(x0), v0^2/2 + 1 - cos(x0)], color="black")) | |
# lower panel: trajectory in phase-space | |
p2 = FramedPlot(ylabel="velocity", xlabel="position") | |
tab[2,1] = p2 | |
add(p2, Points( mod(x+pi,2pi)-pi, v, color="blue")) | |
# adaptive time-step integration | |
t, x, v = ODE.verlet_hh2(pendulum, [0.,4pi], x0,v0) | |
add(p1, Points( t, v.*v/2 + 1. - cos(x), color="red")) | |
add(p2, Points( mod(x+pi,2pi)-pi, v, color="red")) | |
alpha = linspace(0.,2pi,101) | |
display(tab) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment