Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/ad3eced296c235f8f6c1d88110ecac49 to your computer and use it in GitHub Desktop.
Save anonymous/ad3eced296c235f8f6c1d88110ecac49 to your computer and use it in GitHub Desktop.
Представление информации в виде слов определяет

Представление информации в виде слов определяет


= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Файл: >>>>>> Скачать ТУТ!
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


III. Меры и единицы представления, измерения и хранения информации в компьютере
Теория
Сложный уровень


























Классификация мер информации представлена на рис. На синтаксическом уровне учитываются тип носителя и способ представления информации, скорость передачи и обработки, размеры кодов представления информации. Существуют два основных подхода в определении количества информации. Исторически они возникли почти одновременно. В конце х г. Для измерения ещё больших объёмов информации используются следующие величины: При двоичном кодировании текста каждая буква, знак препинания, пробел занимают 1 байт. Один номер четырёхстраничной газеты — Килобайт. Если человек говорит по 8 часов в день без перерыва, то за 70 лет он наговорит около 10 Гигабайт информации. Один чёрно-белый кадр при 32 градациях яркости каждой точки содержит примерно Кб информации, цветной кадр содержит уже около 1Мб информации. Телевизионный фильм продолжительностью 1,5часа с частотой 25 кадров в секунду - Гб. При вероятностном подходе количество информации I на синтаксическом уровне определяется через понятие энтропии системы. Часто информация кодируется числовыми кодами в той или иной системе счисления, особенно это актуально при представлении информации в компьютере. Естественно, что одно и то же количество разрядов в разных системах счисления может передавать разное число состояний отображаемого объекта, что можно представить в виде соотношения. Допустим, что по каналу связи передается n-разрядное сообщение, использующее m различных символов. Наиболее часто используются двоичные и десятичные логарифмы. Для измерения смыслового содержания информации, то есть ее количества на семантическом уровне, наибольшее признание получила тезаурусная мера, которая связывает семантические свойства информации со способностью пользователя принимать поступившее сообщение. Тезаурус — это совокупность сведений, которыми располагает пользователь или система. Характер зависимости количества семантической информации, воспринимаемой потребителем, от его тезауруса показан на рис. Характер зависимости количества семантической информации от его тезауруса. Следовательно, количество семантической информации в сообщении, то есть количество новых знаний, получаемых пользователем, является величиной относительной. Одно и то же сообщение может иметь смысловое содержание для компетентного пользователя и быть бессмысленным для пользователя некомпетентного. Прагматическая мера информации аксиологический подход. Эта мера определяет полезность информации ценность для достижения пользователем поставленной цепи. Эта мера также является величиной относительной, обусловленной особенностями использования этой информации в той или иной системе. Ценность информации целесообразно измерять в тех же самых единицах или близких к ним , в которых измеряется целевая функция. Представим для сопоставления введённые меры информации в таб. Количественные характеристики информации Классификация мер информации представлена на рис. Главное меню Главная Новости Наши услуги Статьи Софт NI LabVIEW Вопросы и ответы Карта сайта О нас. Голосование Какую среду программирования вы используете чаще всего? Посетители Large Visitor Globe. Теоретические основы Тех средства автоматизации АТПиП MathCAD для инженера ТАУ БЖД ИСПУ Гибкая Автоматизация Производства Основы растровой графики Шаговый двигатель ШД Технические измерения и приборы Философия техники и технических наук Философия наук Детали Машин и Основы Конструирования Мат. Сайт не предоставляет электронные версии произведений и ПО, а занимается индексированием файлов, находящихся в файлообменных сетях. Имя пользователя или адрес эл. Забыли данные входа на сайт?


Классификация информации


ЭВМ первых двух поколений могли обрабатывать только числовую информацию, полностью оправдывая свое название вычислительных машин. Лишь переход к третьему поколению принес изменения: С точки зрения ЭВМ текст состоит из отдельных символов. Каждый символ хранится в виде двоичного кода, который является номером символа. Можно сказать, что компьютер имеет собственный алфавит, где весь набор символов строго упорядочен. Количество символов в алфавите также тесно связано с двоичным представлением и у всех ЭВМ равняется Иными словами, каждый символ всегда кодируется 8 битами , то есть занимает ровно один байт. Как видите, хранится не начертание буквы, а ее номер. Именно по этому номеру воспроизводится вид символа на экране дисплея или на бумаге. Поскольку алфавиты в различных типах ЭВМ не полностью совпадают, при переносе с одной модели на другую может произойти превращение разумного текста в "абракадабру". Такой эффект иногда получается даже на одной машине в различных программных средах: Остается утешать себя тем, что задача перекодировки текста из одной кодовой таблицы в другую довольно проста и при наличии программ машина сама великолепно с ней справляется. Наиболее стабильное положение в алфавитах всех ЭВМ занимают латинские буквы, цифры и некоторые специальные знаки. Это связано с существованием международного стандарта ASCII American Standard Code for Information Interchange - Американский стандартный код для обмена информацией. Русские же буквы не стандартизированы и могут иметь различную кодировку. Желающие могут в качестве примера ознакомится с таблицей стандартной части алфавита ЭВМ - символы с шестнадцатеричными кодами с 20 до 7F. Нельзя также пройти мимо еще одного интересного факта: При получении этих кодов внешние устройства не изображают какого-либо символа, а выполняют те или иные управляющие действия. Так, код 07 вызывает подачу стандартного звукового сигнала, а код 0C - очистку экрана. Особую роль играют коды 0A перевод строки, обозначаемый часто LF и 0D возврат каретки - CR. Первый вызывает перемещение в следующую строку без изменения позиции, а второй - на начало текущей строки. Таким образом, для перехода на начало новой строки требуются оба кода и в любом тексте эта "неразлучная пара" кодов хранится после каждой строки. Обратим внимание читателя на то, что названия возврат каретки и перевод строки имеют историческое происхождение и связаны с устройством пишущей машинки. В отличии текстового представления информации, когда минимальной единицей является символ, при отображении графики картинка строится из отдельных элементов - ПИКСЕЛОВ от английских слов PIC ture EL ement, означающих " элемент картинки ". Очень часто пиксел совпадает с точкой дисплея, но это совсем необязательно: Каждый пиксел характеризуется цветом. Как и вся остальная информация в ЭВМ, цвет кодируется числом. В зависимости от количества допустимых цветов, число двоичных разрядов на один пиксел будет различным. Так, для черно-белой картинки закодировать цвет точки можно одним битом: Для случая 16 цветов требуется уже по 4 разряда на каждую точку, а для цветов - 8 , то есть 1 байт. Число цветов, воспроизводимых на экране дисплея K , и число бит, отводимых в видеопамяти под каждый пиксель N , связаны формулой:. Наконец, при цветах на каждую точку требуется уже по байту и наш квадратик разрастется еще вдвое. Обратите внимание на то, что белый цвет, как самый яркий, обычно имеет максимально возможный номер. Поэтому для черно-белого режима он равен 1 , для цветного - 15 , а для цветов - Все многообразие красок на экране получается путем смешивания трех базовых цветов: Каждый пиксель на экране состоит из трех близко расположенных элементов, святящихся этими цветами. Цветные дисплеи, использующие такой принцип, называются RGB Red - Green - Blue - мониторами. Если все три составляющие имеют одинаковую интенсивность яркость , то из их сочетаний можно получить 8 различных цветов 2 3. Желающие могут в качестве примера ознакомится с таблицей кодирующей 8 - цветную палитру с помощью трехразрядного двоичного кода. Шестнадцатицветная палитра получается при использовании 4 - разрядной кодировки пикселя: Этот бит управляет яркостью всех трех цветов одновременно. Большее количество цветов получается при раздельном управлении интенсивностью базовых цветов. Причем интенсивность может иметь более двух уровней, если для кодирования каждого из базовых цветов выделять больше одного бита. Биты такого кода распределены следующим образом: Это значит, что под красную и зеленую компоненты выделено по 3 бита , под синюю - 2 бита. При векторном подходе изображение рассматривается как совокупность простых элементов: Графическая информация - это данные, однозначно определяющие все графические приметивы, составляющие рисунок. Положение и форма графических примитивов задаются в системе графических координат, связанных с экраном. Обычно начало координат расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось X направлена слева направо; вертикальная ось Y - сверху вниз. Отрезок прямой линии однозначно определяется указанием координат его концов; окружность - координатами центра и радиусом; многоугольник - координатами его углов, закрашенная область - граниной линией и цветом закраски. Таким образом, графическая информация, также как числовая и текстовая, в конечном счете заносится в память в виде двоичных чисел. Для их записи с целью последующего воспроизведения необходимо как можно точней сохранить форму кривой зависимости интенсивности звука от времени. При этом возникает одна очень важная и принципиальная трудность: Отсюда следует, что в процессе сохранения звуковой информации она должна быть "оцифрована", то есть из аналоговой непрерывной формы переведена в цифровую дискретную. Данную функцию выполняет специальный блок, входящий в состав звуковой карты, который называется аналого-цифровой преобразователь — АЦП. Во-первых , он производит дискретизацию записываемого звукового сигнала по времени. Это означает, что измерение уровня интенсивности звука ведется не непрерывно, а, напротив, в определенные фиксированные моменты времени удобнее, разумеется, через равные временные промежутки. Частоту, характеризующую периодичность измерения звукового сигнала принято называть частотой дискретизации. Вопрос о ее выборе далеко не праздный и ответ в значительной степени зависит от спектра сохраняемого сигнала: Считается, что редкий человек слышит звук частотой более 20 Гц 20 кГц. Поэтому для высококачественного воспроизведения звука верхнюю границу обычно с некоторым запасом принимают равной 22 кГц. Отсюда немедленно следует, что частота звукозаписи в таких случаях должна быть не ниже 44 кГц. Названная частота используется, в частности, при записи музыкальных компакт-дисков. Однако часто такое высокое качество не требуется, и частоту дискретизации можно значительно снизить. Например, при записи речи вполне достаточно частоты дискретизации 8 кГц. Заметим, что результат при этом получается хотя и не блестящий, но легко разборчивый — вспомните, как вы слышите голоса своих друзей по телефону. Во-вторых , АЦП производит дискретизацию амплитуды звукового сигнала. Это следует понимать так, что при измерении имеется "сетка" стандартных уровней например, или 65 — это количество характеризует глубину кодирования , и текущий уровень измеряемого сигнала округляется до ближайшего из них. Напрашивается линейная зависимость между величиной входного сигнала и номером уровня. Иными словами, если громкость возрастает в 2 раза, то интуитивно ожидается, что и соответствующее ему число возрастет вдвое. В простейших случаях так и делается, но, как показывает более детальное изучение, это не самое лучшее решение. Проблема в том, что в широком диапазоне громкости звука человеческое ухо не является линейным. Например, при очень громких звуках, увеличение или уменьшение интенсивности звука почти не дает эффекта, в то время как при восприятии шепота очень незначительное падение уровня может приводить к полной потере разборчивости. Поэтому при записи цифрового звука, особенно при 8 - битном кодировании, часто используют различные неравномерные распределения уровней громкости, в основе которых лежит логарифмический закон. Итак, в ходе оцифровки звука мы получаем поток целых чисел, представляющих собой стандартные амплитуды сигналов через равные промежутки времени. На рисунке представлен процесс "оцифровки" зависимости интенсивности звукового сигнала I от времени t. Отчетливо видна дискретизация по времени равномерные отсчеты на горизонтальной оси и по интенсивности сигнала требуемое при этом округление схематически изображено "изломами" горизонтальных линий разметки. Подчеркнем, что на рисунке степень дискретизации для наглядности сознательно утрирована: Мы рассмотрели лишь наиболее общие принципы записи цифрового звука. На практике для получения качественных звуковых файлов используется целый ряд дополнительных технических приемов. Изложенный метод преобразования звуковой информации для хранения в памяти компьютера в очередной раз подтверждает уже неоднократно обсуждавшийся ранее тезис: Остается рассмотреть обратный процесс — воспроизведение записанного в компьютерный файл звука. Здесь имеет место преобразование в противоположном направлении — из дискретной цифровой формы представления сигнала в непрерывную аналоговую, поэтому вполне естественно соответствующий узел компьютерного устройства называется ЦАП — цифро-аналоговый преобразователь. Процесс реконструкции первоначального аналогового сигнала по имеющимся дискретным данным нетривиален, поскольку никакой информации о форме сигнала между соседними отсчетами не сохранилось. В разных звуковых картах для восстановления звукового сигнала могут использоваться различные способы. Наиболее наглядный и понятный из них состоит в том, что по имеющимся точкам рассчитывается степенная функция, проходящая через заданные точки, которая и принимается в качестве формы аналогового сигнала. Подставив в эту формулу известные значения времени и приравняв их к сохраненным в файле значениям интенсивности звука I, получим три линейных уравнения с тремя неизвестными a, b и c. Видно, что на интерполируемом участке даже для параболы совпадение получается вполне удовлетворительное. Кроме того, технические возможности современных микросхем позволяют значительно увеличить степень полинома многочлена , а вместе с ней и точность реконструкции формы сигнала. Следует четко представлять, что обработка видеоинформации требует очень высокого быстродействия компьютерной системы, причем не только процессора, но и CD-ROM, с которого считываются данные, конечно, видеосистемы, а также всех информационных шин, по которым данные передаются от одного устройства к другому. В частности, когда при весьма скромном размере окна видеоизображения x и 16 битах цветовой информации на каждый пиксел скорость передачи данных превышает один мегабайт в секунду. То есть за десять минут должно быть передано более Мбайт данных, что эквивалентно немного немало почти целому диску CD-ROM! Таким образом, если для прочих видов информации сжатие лишь повышает удобства работы, то для видеоинформации технологии сжатия имеют поистине жизненно важное значение. Что представляет собой фильм с точки зрения информатики? Прежде всего, это сочетание звуковой и графической информации. Кроме того, для создания на экране эффекта движения используется дискретная по своей сути технология быстрой смены статических картинок. Исследования показали, что если за одну секунду сменяется более кадров, то человеческий глаз воспринимает изменения на них как непрерывные. Традиционный кадр на кинопленке "докомпьютерной" эпохи выглядел так, как показано на рисунке. Основную его часть, разумеется, занимает видеоизображение, а справа сбоку отчетливо видны колебания на звуковой дорожке. Имеющаяся по обоим краям пленки периодическая система отверстий перфорация служит для механической протяжки ленты в киноаппарате с помощью специального механизма. Казалось бы, если проблемы кодирования статической графики и звука решены, то сохранить видеоизображение уже не составит труда. Но это только на первый взгляд, поскольку, как показывает разобранный выше пример, при использовании традиционных методов сохранения информации электронная версия фильма получится слишком большой. Достаточно очевидное усовершенствование состоит в том, чтобы первый кадр запомнить целиком в литературе его принято называть ключевым , а в следующих сохранять лишь отличия от начального кадра разностные кадры. Принцип формирования разностного кадра поясняется на следующем рисунке, где продемонстрировано небольшое горизонтальное смещение прямоугольного объекта. Отчетливо видно, что при этом на всей площади кадра изменились всего 2 небольшие зоны: Для разноцветных предметов произвольной формы эффект сохранится, хотя изобразить его будет заметно труднее. Конечно, в фильме существует много ситуаций, связанных со сменой действия, когда первый кадр новой сцены настолько отличается от предыдущего, что его проще сделать ключевым, чем разностным. Может показаться, что в компьютерном фильме будет столько ключевых кадров, сколько новых ракурсов камеры. Тем не менее, их гораздо больше. Регулярное расположение подобных кадров в потоке позволяет пользователю оперативно начинать просмотр с любого места фильма: Кроме того, указанная профилактическая мера позволяет эффективно восстановить изображение при любых сбоях или при "потере темпа" и пропуске отдельных кадров на медленных компьютерных системах. Заметим, что в современных методах сохранения движущихся видеоизображений используются и другие типы кадров. В среде Windows , например, уже более 10 лет начиная с версии 3. Суть AVI файлов состоит в хранении структур произвольных мультимедийных данных, каждая из которых имеет простой вид, изображенный на рисунке. Файл как таковой представляет собой единый блок, причем в него, как и в любой другой, могут быть вложены новые блоки. Заметим, что идентификатор блока определяет тип информации, которая хранится в блоке. Внутри описанного выше своеобразного контейнера информации блока могут храниться абсолютно произвольные данные, в том числе, например, блоки, сжатые разными методами. Таким образом, все AVI -файлы только внешне выглядят одинаково, а внутри могут различаться очень существенно. Наиболее популярные программы проигрывания видеофайлов позволяют использовать замещаемые подсистемы сжатия и восстановления видеоданных — кодеки от англ. Такой подход позволяет легко адаптировать новые технологии, как только те становятся доступными. Замещаемые кодеки хороши как для пользователей, так и для разработчиков программного обеспечения. Тем не менее, большое разнообразие кодеков создает определенные трудности для производителей видеопродукции. Часто в качестве выхода из создавшегося положения необходимые кодеки помещают на компакт-диск с фильмами или даже поставляют видеоматериалы в нескольких вариантах, предоставляя тем самым возможность выбрать подходящий. Все больше распространяется автоматизация распознавания, когда плейер, обнаружив информацию об отсутствующем кодеке, загружает его из Интеренет. Представление чисел и любой информации в компьютере. Все материалы в разделе "Информатика". Представление текстовой информации в компьютере ЭВМ первых двух поколений могли обрабатывать только числовую информацию, полностью оправдывая свое название вычислительных машин. Для того, чтобы наглядно представить себе, как хранится в памяти ЭВМ простейшее изображение, рассмотрим для примера белый квадратик на черном фоне размером 4 х 4. В черно-белом режиме это будет выглядеть наиболее компактно сначала для наглядности приведен двоичный, а затем шестнадцатиричныйвид: Формат Характеристика AVI В среде Windows , например, уже более 10 лет начиная с версии 3. Представление целых чисел в памяти ПК. В черно-белом режиме это будет выглядеть наиболее компактно сначала для наглядности приведен двоичный, а затем шестнадцатиричныйвид:. В режиме 16 -цветной графики это же самое изображение потребует памяти в 4 раза больше. Еще более универсальным является мультимедийный формат Quick Time , первоначально возникший на компьютерах Apple. По сравнению с описанным выше, он позволяет хранить независимые фрагменты данных, причем даже не имеющие общей временной синхронизации, как этого требует AVI. В результате в одном файле может, например, храниться песня, текст с ее словами, нотная запись в MIDI -формате, способная управлять синтезатором, и т. Мощной особенностью Quick Time является возможность формировать изображение на новой дорожке путем ссылок на кадры, имеющиеся на других дорожках. Полученная таким способом дорожка оказывается несоизмеримо меньше, чем если бы на нее были скопированы требуемые кадры. Благодаря описанной возможности файл подобного типа легко может содержать не только полную высококачественную версию видеофильма, но и специальным образом "упрощенную" копию для медленных компьютеров, а также рекламный ролик, представляющий собой "выжимку" из полной версии. И все это без особого увеличения объема по сравнению с полной копией. Все большее распространение в последнее время получают системы сжатия видеоизображений, допускающие некоторые незаметные для глаза искажения изображения с целью повышения степени сжатия. Методы, применяемые в MPEG , непросты для понимания и опираются на достаточно сложную математику. Укажем лишь наиболее общие приемы, за счет которых достигается сжатие. Прежде всего, обрабатываемый сигнал из RGB-представления с равноправными компонентами преобразуется в яркость и две "координаты" цветности. Как показывают эксперименты, цветовые компоненты менее важны для восприятия и их можно проредить вдвое. Кроме того, производится специальные математические преобразования DCT — дискретно-косинусное преобразование , несколько загрубляющее изображение в мелких деталях. Опять таки из экспериментов следует, что на субъективном восприятии изображение это практически не сказывается. Наконец, специальными методами ликвидируется сильная избыточность информации, связанная со слабыми отличиями между соседними кадрами. Полученные в результате всех описанных процедур данные дополнительно сжимаются общепринятыми методами, подобно тому, как это делается при архивации файлов. В последнее время все большее распространение получает технология под названием DivX происходит от сокращения слов Digital Video Express , обозначающих название видеосистемы, которая "прославилась" неудачной попыткой взимать небольшую оплату за каждый просмотр видеодиска; к собственно технологии DivX это никакого отношения не имело. Благодаря DivX удалось достигнуть степени сжатия, позволившей вмесить качественную запись полнометражного фильма на один компакт-диск — сжать 4,7 Гб DVD-фильма до Мб. И хотя это достижение, к сожалению, чаще всего используется для пиратского копирования, сам по себе этот факт не умаляет достоинств новой технологии. Как и то, что самая первая версия сжатия DivX была сработана французскими хакерами из MPEG-4 — современные версии DivX уже не имеют к этому событию никакого отношения. Представление текстовой информации в компьютере. Представление информации в компьютере. Представление информации в ЭВМ. Методические указания для проведения лабораторной работы Томск Отчет по работе с программами SysInfo, PrintFX,Font Edit,Snipper. Выполнение прикладных задач на компьютере. Преступления против компьютерной информации. Арифметические основы работы ЭВМ. Нелинейное представление информации, гипертекст и его использование в коммуникации. Представление логической информации в электронно-вычислительной машине.


Металлическая печь своими руками чертежи
Быстрый способ приготовить пиццу
Основные цели и методы начертательной геометрии
Расписание лиги чемпионов на сегодня
Задачи по физике 10 класс
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment