ml-bot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
############################################################################## | |
## ## | |
## ## | |
## ( \/ )( ) ___( _ \ / \(_ _) ## | |
## / \/ \/ (_/\(___)) _ (( O ) )( ## | |
## \_)(_/\____/ (____/ \__/ (__) ## | |
## ## | |
## ## | |
## ## | |
## The beginings of an ml-bot. To start, he'll let us know when ## | |
## there is a trending post on r/machinelearning ## | |
## ## | |
## ## | |
############################################################################## | |
from boltons.cacheutils import LRU | |
import pickle | |
import os | |
import json | |
import requests | |
pushed_path = 'pushed.pickle' | |
USER_AGENT = "linux:com.adammenges.herpaderp-mlbot:v0.00000001 (by adammenges)" | |
cache = LRU(max_size=10000) | |
if os.path.exists(pushed_path): | |
with open(pushed_path, 'rb') as f: | |
pushed = pickle.load(f) | |
else: | |
pushed = LRU(max_size=2000) | |
# Should be moved over to helper lib | |
def requests_get(url): | |
try: | |
response = requests.get( | |
url, | |
headers={'User-Agent': USER_AGENT}, | |
timeout=60, | |
verify=False, | |
) | |
except Exception, e: | |
print("ERROR: " + str(e)) | |
return "" | |
if 'Too Many Requests' in response.reason: | |
print "Pausing..." | |
time.sleep(30) | |
return requests_get(url) | |
if 'content-type' in response.headers: | |
if 'html' in response.headers['content-type']: | |
return response.text | |
elif 'json' in response.headers['content-type']: | |
return response.text | |
else: | |
print('Not HTML/JSON') # Proper logging at some point | |
return "" # Support PDFs, etc., later... | |
# Do some work here once we have enough data to choose a good threshold | |
def running_mean(): | |
pass | |
def refresh_data(): | |
try: | |
print('Starting to get r/ml data') | |
r = requests_get('http://reddit.com/r/machinelearning.json') | |
j = json.loads(r) | |
for i in j['data']['children']: | |
k = i['data'] | |
cache[k['url']] = k | |
except Exception, e: | |
print('ERROR: ' + str(e)) | |
def push(url): | |
push_url = 'https://hooks.slack.com/services/****' | |
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} | |
pushed[url] = True | |
payload = { | |
'text': "New top post on r/machinelearning! \n\n <{}>".format(url), | |
"username": "ml-bot", | |
"icon_emoji": ":smiling_imp:" | |
} | |
r = requests.post(push_url, data=json.dumps(payload)) | |
with open(pushed_path, 'wb') as f: | |
pickle.dump(pushed, f) | |
return r | |
def run(): | |
import time | |
while(True): | |
refresh_data() | |
for url, item in cache.items(): | |
if (item['ups'] > 50) and (url not in pushed): | |
push(url) | |
print('sleeping...') | |
time.sleep(600) | |
print('about to begin...') # So I don't kill it the second it starts by accident, and end up ruining the dumped cache. | |
time.sleep(20) | |
run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment