AGE_PREDICTORS_ONLY EM DATA
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import pandas as pd | |
import numpy as np | |
import numpy | |
from sklearn.manifold import TSNE | |
from sklearn.decomposition import PCA | |
import matplotlib.pyplot as plt | |
import seaborn | |
from sklearn import preprocessing | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.model_selection train_test_split | |
from sklearn.linear_model import Ridge, RidgeCV, ElasticNetCV, LassoCV, LassoLarsCV | |
from sklearn.model_selection import cross_val_score | |
seaborn.set(style='ticks') | |
import re | |
def rmse_cv(model, X_train, y): | |
rmse= np.sqrt(-cross_val_score(model, X_train, y, scoring="neg_mean_squared_error", cv = 5)) | |
return(rmse) | |
### read in the files | |
em_csf = pd.read_csv('/home/labcomp/Desktop/Age_preds/EM_CSF_JULY18.csv', header=0, sep=";") | |
em_csf=em_csf.loc[em_csf.Age != 0] | |
em_csf.reset_index(drop=True, inplace=True) | |
em_csf.drop(['C34 gp41 HIV Fragment'], inplace=True, axis=1) ## non human protein control | |
### adjust for races | |
em_csf.Race.value_counts() | |
em_csf.loc[em_csf.Race.str.contains(r'(American Indian|Other|Caucasian/Asian|\.|Caucasian/American Indian|Indian)'), 'Race'] = 'other' | |
csf_race_covs=pd.get_dummies(em_csf.Race) | |
em_csf_covars=csf_race_covs | |
em_csf_covars.loc[:, ('sex')] = np.where(em_csf.Gender == 'F', 1, 2) | |
em_csf_scaled = pd.DataFrame(StandardScaler().fit_transform(em_csf.iloc[:, 11:]), columns=em_csf.columns[11:]) ### scale the values | |
em_csf_scaled_tes = pd.DataFrame(StandardScaler().fit_transform(2**(em_csf.iloc[:, 11:])), columns=em_csf.columns[11:]) ### scale the values | |
em_csf_scaled2 = pd.concat([em_csf_covars, em_csf_scaled], axis=1) ## add the race covariates | |
em_csf_scaled2_tes = pd.concat([em_csf_covars, em_csf_scaled_tes], axis=1) ## add the race covariates | |
em_serum = pd.read_csv('/home/labcomp/Desktop/Age_preds/SERUM_FINAL_Jan18.csv', header=0) | |
### change dbid to object | |
em_serum.DbID=em_serum.DbID.astype('object') | |
em_serum.loc[em_serum.DbID.isin(em_csf.DbID), ('DbID')] | |
### get individuals that are only present in both csf and serum | |
em_serum=em_serum.loc[em_serum.DbID.isin(em_csf.DbID)] | |
em_serum.reset_index(drop=True, inplace=True) | |
em_serum.Age=em_serum.Age.astype('float64') | |
em_serum.loc[:, 'sex'] = np.where(em_serum.Gender == 'F', 1, 2) | |
## make numpy arrays | |
csf_vars = np.zeros((em_csf_scaled2.shape)) | |
csf_vars2 = np.zeros((em_csf_scaled2.shape)) | |
serum_vars = np.zeros((em_serum.ix[:, 10:].shape)) | |
csf_age = np.zeros((em_csf.Age.shape[0], 1)) | |
serum_age = np.zeros((em_serum.Age.shape[0], 1)) | |
for i in xrange(0, len(em_csf_scaled2)): | |
csf_vars[i] = em_csf_scaled2.ix[i] | |
csf_vars2[i] = em_csf_scaled2_tes.ix[i] | |
csf_age[i] = em_csf.Age[i] | |
for i in xrange(0, len(em_serum)): | |
serum_vars[i] = em_serum.ix[i, 10:] | |
serum_age[i] = em_serum.Age[i] | |
#csf_vars_sc = StandardScaler().fit_transform(csf_vars) | |
serum_vars_sc = StandardScaler().fit_transform(serum_vars) | |
## split into test train for csf and serum | |
csf_train, csf_test, csf_age_train, csf_age_test = train_test_split(csf_vars, csf_age, random_state=42,test_size=0.33) | |
csf_train2, csf_test2, csf_age_train2, csf_age_test2 = train_test_split(csf_vars2, csf_age, random_state=42,test_size=0.33) | |
serum_train, serum_test, serum_age_train, serum_age_test = train_test_split(serum_vars_sc, serum_age, random_state=42,test_size=0.33) | |
################# CSF from EM cohort | |
pca = PCA(n_components=2, random_state=42) | |
pca_pass1=pca.fit_transform(csf_vars) | |
tsne = TSNE(n_components=2, verbose=1) | |
tsne_p1 = tsne.fit_transform(pca_pass1) | |
tsne_p1_df = pd.DataFrame(index=range(0, len(tsne_p1)), columns=['P1', 'P2', 'Age']) | |
tsne_p1_df.loc[:,('P1')] = tsne_p1[:,0] | |
tsne_p1_df.loc[:,('P2')] = tsne_p1[:,1] | |
tsne_p1_df.loc[:,('Age')] = em_csf.Age | |
tsne_p1_df.loc[:, ('Race')] = em_csf.Race | |
#tsne_p1_df.loc[:, ('Race')] = comb.Race | |
fg = sns.FacetGrid(data=tsne_p1_df, hue='Age', palette="Set1") | |
fg.map(plt.scatter, 'P1', 'P2').add_legend() | |
ggplot(aes(x='P1', y='P2', color = 'Age', shape='Race'), data=tsne_p1_df)+scale_color_gradient(low='green', high='red')+geom_point(aes(size=100, alpha=0.5)) | |
### build a lasso model | |
model_lasso = LassoCV(n_jobs=-1, verbose=2, cv=5).fit(csf_train, csf_age_train) | |
model_lasso2 = LassoCV(n_jobs=-1, verbose=2, cv=5).fit(csf_train2, csf_age_train2) | |
model_enet = ElasticNetCV(n_jobs=-1, verbose=2).fit(csf_train, csf_age_train) | |
rmse_cv(model_lasso, csf_train, csf_age_train).mean() | |
rmse_cv(model_enet, csf_train, csf_age_train).mean() | |
print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the other " + str(sum(coef == 0)) + " variables") | |
coef = pd.Series(model_lasso.coef_, index = em_csf_scaled2.columns) | |
coef2 = pd.Series(model_lasso2.coef_, index = em_csf_scaled2.columns) | |
imp_coef = pd.concat([coef.sort_values().head(12), coef.sort_values().tail(12)]) | |
imp_coef2 = pd.concat([coef2.sort_values().head(12), coef2.sort_values().tail(12)]) | |
### correlation matrix with sns | |
csf_scaled=pd.DataFrame(csf_vars, columns=em_csf_scaled2.columns) | |
csf_scaled.loc[:, 'Age'] = em_csf.Age | |
lasso_csf_sel=csf_scaled.loc[:, np.append(imp_coef.index.values, 'Age')] | |
corrmat = lasso_csf_sel.corr() | |
#f, ax = plt.subplots(figsize=(12, 9)) | |
g=sns.heatmap(corrmat, vmax=0.8, square=True); | |
plt.xticks(rotation=90) | |
plt.yticks(rotation=0) | |
plt.show() | |
plt.title('Lasso model features highly correlated with Age') | |
pylab.savefig('/home/labcomp/Desktop/csf_all_cor_with_age_heatmap.png', bbox_inches='tight') | |
### top 10 correlation matrix variables | |
k = 15 #number of variables for heatmap | |
cols = corrmat.nlargest(k, 'Age')['Age'].index | |
cm = np.corrcoef(csf_scaled[cols].values.T) | |
sns.set(font_scale=1) | |
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 8}, yticklabels=cols.values, xticklabels=cols.values) | |
plt.xticks(rotation=90) | |
plt.yticks(rotation=0) | |
plt.show() | |
pylab.savefig('/home/labcomp/Desktop/csf_top_cor_with_age.png', bbox_inches='tight') | |
#### coef importance ### | |
matplotlib.rcParams['figure.figsize'] = (8.0, 10.0) | |
imp_coef.plot(kind = "barh") | |
plt.title("Coefficients in the Lasso Model -CSF") | |
pylab.savefig('/home/labcomp/Desktop/csf_imp_coefs.png', bbox_inches='tight') | |
#ggplot(aes(x='Age', y='JAM-B'), data=em_csf_scaled2)+geom_point(size=100, alpha=0.5) | |
### how do residuals plot against each other | |
matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) | |
preds = pd.DataFrame({"preds":model_lasso.predict(csf_test), "true":[i[0] for i in csf_age_test.tolist()]}) | |
preds["residuals"] = preds["true"] - preds["preds"] | |
#preds.plot(x = "true", y = "preds",kind = "scatter") | |
fig, ax = plt.subplots() | |
ax.scatter(preds.true, preds.preds, edgecolors=(0, 0, 0)) | |
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) | |
ax.set_xlabel('Measured') | |
ax.set_ylabel('Predicted') | |
plt.title('Predicted Vs True CSF') | |
plt.show() | |
pylab.savefig('/home/labcomp/Desktop/csf_Pred_Vs_True.png', bbox_inches='tight') | |
### RMSE on the test set | |
from sklearn.metrics import mean_squared_error | |
mean_squared_error(model_lasso.predict(csf_test), csf_age_test) | |
from sklearn.metrics import mean_absolute_error | |
mean_absolute_error(model_lasso.predict(csf_test), csf_age_test) | |
from sklearn.metrics import r2_score | |
r2_score(model_lasso.predict(csf_test), csf_age_test) | |
#################### ensemble of XGBoost and lasso models | |
import xgboost as xgb | |
from sklearn.model_selection import KFold, train_test_split, GridSearchCV | |
xgb_model = xgb.XGBRegressor() | |
#n_estimators = range(50, 700, 50) | |
#reg_alpha= np.linspace(0.01, 10, num=25) | |
clf = GridSearchCV(xgb_model,{'max_depth': [2,4,6,8],'n_estimators': [50,100,200, 400, 600, 800], 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100]}, verbose=1, error_score = 'r2_score') | |
clf.fit(csf_train,csf_age_train) | |
print(clf.best_score_) | |
print(clf.best_params_) | |
xgb_preds =clf.predict(csf_test) ## orginal estimator | |
lasso_preds=model_lasso.predict(csf_test) | |
lasso_preds | |
predictions = pd.DataFrame({"xgb":xgb_preds, "lasso":lasso_preds}) | |
predictions | |
predictions.plot(x = "xgb", y = "lasso", kind = "scatter") | |
preds = 0.7*lasso_preds + 0.3*xgb_preds | |
preds | |
r2_score(preds, csf_age_test) | |
mean_absolute_error(preds, csf_age_test) | |
### plot the ensemble model | |
fig, ax = plt.subplots() | |
ax.scatter(preds, csf_age_test, edgecolors=(0, 0, 0)) | |
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) | |
ax.set_xlabel('Predicted') | |
ax.set_ylabel('True') | |
plt.title('Predicted Vs True CSF') | |
plt.show() | |
pylab.savefig('/home/labcomp/Desktop/csf_Pred_Vs_True.png', bbox_inches='tight') | |
############################################ serum from EM | |
tsne_serum = TSNE(n_components=2, verbose=1) | |
tsne_serum_p1 = tsne.fit_transform(serum_vars_sc) | |
tsne_serum_p1_df = pd.DataFrame(index=range(0, len(tsne_serum_p1)), columns=['P1', 'P2', 'Age']) | |
tsne_serum_p1_df.loc[:,('P1')] = tsne_serum_p1[:,0] | |
tsne_serum_p1_df.loc[:,('P2')] = tsne_serum_p1[:,1] | |
tsne_serum_p1_df.loc[:,('Age')] = em_serum.Age | |
#tsne_p1_df.loc[:, ('Race')] = comb.Race | |
ggplot(aes(x='P1', y='P2', color = 'Age'), data=tsne_p1_df)+scale_color_gradient(low='green', high='red')+geom_point(aes(size=100, alpha=0.5)) | |
### build a lasso model | |
model_lasso_ser = LassoCV(n_jobs=-1, verbose=2).fit(serum_train, serum_age_train) | |
model_enet_ser = ElasticNetCV(n_jobs=-1, verbose=2).fit(serum_train, serum_age_train) | |
rmse_cv(model_lasso_ser, serum_train, serum_age_train).mean() | |
print("Lasso picked " + str(sum(coef_ser != 0)) + " variables and eliminated the other " + str(sum(coef_ser == 0)) + " variables") | |
coef_ser = pd.Series(model_lasso_ser.coef_, index = em_serum.columns[10:1120]) | |
imp_coef_ser = pd.concat([coef_ser.sort_values().head(15), coef_ser.sort_values().tail(15)]) | |
### correlation matrix with sns | |
serum_scaled=pd.DataFrame(serum_vars_sc, columns=em_serum.columns[10:]) | |
serum_scaled.loc[:, 'Age'] = em_serum.Age | |
lasso_serum_sel=serum_scaled.loc[:, np.append(imp_coef_ser.index.values, 'Age')] | |
corrmat_ser = lasso_serum_sel.corr() | |
#f, ax = plt.subplots(figsize=(12, 9)) | |
g_ser=sns.heatmap(corrmat_ser, vmax=0.8, square=True); | |
plt.xticks(rotation=90) | |
plt.yticks(rotation=0) | |
plt.show() | |
pylab.savefig('/home/labcomp/Desktop/serum_correlation_lasso_sel.png', bbox_inches='tight') | |
### top 10 correlation matrix variables | |
k = 15 #number of variables for heatmap | |
cols_ser = corrmat_ser.nlargest(k, 'Age')['Age'].index | |
cm_ser = np.corrcoef(serum_scaled[cols_ser].values.T) | |
sns.set(font_scale=1) | |
hm_ser = sns.heatmap(cm_ser, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 8}, yticklabels=cols_ser.values, xticklabels=cols_ser.values) | |
plt.xticks(rotation=90) | |
plt.yticks(rotation=0) | |
plt.show() | |
pylab.savefig('/home/labcomp/Desktop/serum_corr_vals_lasso_sel.png', bbox_inches='tight') | |
#### coef importance ### | |
matplotlib.rcParams['figure.figsize'] = (8.0, 10.0) | |
imp_coef_ser.plot(kind = "barh") | |
plt.title("Coefficients in the Lasso Model Serum") | |
pylab.savefig('/home/labcomp/Desktop/serum_ceof_importance.png', bbox_inches='tight') | |
ggplot(aes(x='Age', y='TIMP-2'), data=em_serum)+geom_point(size=100, alpha=0.5) | |
### how do residuals plot against each other | |
matplotlib.rcParams['figure.figsize'] = (6.0, 6.0) | |
preds_ser = pd.DataFrame({"preds":model_lasso_ser.predict(serum_test), "true":[i[0] for i in serum_age_test.tolist()]}) | |
preds_ser["residuals"] = preds_ser["true"] - preds_ser["preds"] | |
#preds.plot(x = "true", y = "residuals",kind = "scatter") | |
fig, ax = plt.subplots() | |
ax.scatter(model_lasso_ser.predict(serum_test), serum_age_test, edgecolors=(0, 0, 0)) | |
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) | |
ax.set_xlabel('Predicted') | |
ax.set_ylabel('True') | |
plt.title('Predicted Vs True SERUM') | |
plt.show() | |
pylab.savefig('/home/labcomp/Desktop/SERUM_Pred_Vs_True.png', bbox_inches='tight') | |
### RMSE on the test set | |
from sklearn.metrics import mean_squared_error | |
mean_squared_error(model_lasso_ser.predict(serum_test), serum_age_test) | |
from sklearn.metrics import mean_absolute_error | |
mean_absolute_error(model_lasso_ser.predict(serum_test), serum_age_test) | |
from sklearn.metrics import r2_score | |
r2_score(model_lasso_ser.predict(serum_test), serum_age_test) | |
clf_ser = GridSearchCV(xgb_model,{'max_depth': [2,4,6,8],'n_estimators': [50,100,200, 400, 600, 800, 900, 1000], 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100]}, verbose=1, error_score = 'r2_score') | |
clf_ser.fit(serum_train,serum_age_train) | |
print(clf_ser.best_score_) | |
print(clf_ser.best_params_) | |
xgb_preds_ser =clf_ser.predict(serum_test) ## orginal estimator | |
lasso_preds_ser=model_lasso_ser.predict(serum_test) | |
#lasso_preds | |
predictions_ser = pd.DataFrame({"xgb":xgb_preds_ser, "lasso":lasso_preds_ser}) | |
predictions_ser | |
predictions_ser.plot(x = "xgb", y = "lasso", kind = "scatter") | |
preds_ser = 0.7*lasso_preds_ser + 0.3*xgb_preds_ser | |
r2_score(preds_ser, serum_age_test) | |
mean_absolute_error(preds_ser, serum_age_test) | |
### plot the ensemble model ############### LASSO performs better than a ensemble model | |
fig, ax = plt.subplots() | |
ax.scatter(lasso_preds_ser, serum_age_test, edgecolors=(0, 0, 0)) | |
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) | |
ax.set_xlabel('Predicted') | |
ax.set_ylabel('True') | |
plt.title('Predicted Vs True SERUM') | |
plt.show() | |
pylab.savefig('/home/labcomp/Desktop/SERUM_Pred_Vs_True.png', bbox_inches='tight') | |
########## keras | |
from keras.models import Sequential | |
from keras.layers import Dense, Activation, Dropout | |
model = Sequential() | |
model.add(Dense(64, input_dim=serum_train.shape[1])) | |
model.add(Activation('sigmoid')) | |
#model.add(Dropout(0.2)) | |
#model.add(Dense(64/2)) | |
#model.add(Activation('sigmoid')) | |
#model.add(Dropout(0.2)) | |
model.add(Dense(1)) | |
model.add(Activation('linear')) | |
model.compile(optimizer='rmsprop', loss='mse', metrics=['accuracy']) | |
his=model.fit(serum_train, serum_age_train, epochs=1000, batch_size=32, validation_data=(serum_test, serum_age_test), shuffle=True) | |
plt.plot(his.history['acc']) | |
plt.plot(his.history['val_acc']) | |
plt.title('model accuracy') | |
plt.ylabel('accuracy') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'test'], loc='upper left') | |
plt.show() | |
plt.plot(his.history['loss']) | |
plt.plot(his.history['val_loss']) | |
plt.title('model loss') | |
plt.ylabel('loss') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'test'], loc='upper left') | |
plt.show() | |
from sklearn.model_selection import cross_val_predict | |
from sklearn import linear_model | |
import matplotlib.pyplot as plt | |
lr = linear_model.LinearRegression() | |
boston = datasets.load_boston() | |
y = boston.target | |
# cross_val_predict returns an array of the same size as `y` where each entry | |
# is a prediction obtained by cross validation: | |
predicted = cross_val_predict(LassoCV(), serum_train, serum_age_train, cv=10) | |
fig, ax = plt.subplots() | |
ax.scatter(serum_age_train, predicted, edgecolors=(0, 0, 0)) | |
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) | |
ax.set_xlabel('Measured') | |
ax.set_ylabel('Predicted') | |
plt.show() | |
## EXTRA SCRIPTS FOR DEBUUNG | |
########## keras | |
from keras.models import Sequential | |
from keras.layers import Dense, Activation, Dropout | |
model = Sequential() | |
model.add(Dense(600, input_dim=csf_train.shape[1])) | |
model.add(Activation('sigmoid')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(600/2)) | |
model.add(Activation('sigmoid')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(1)) | |
model.add(Activation('linear')) | |
model.compile(optimizer='adam', loss='mse', metrics=['accuracy']) | |
his=model.fit(csf_train, csf_age_train, epochs=500, batch_size=16, validation_data=(csf_test, csf_age_test), shuffle=True) | |
plt.plot(his.history['acc']) | |
plt.plot(his.history['val_acc']) | |
plt.title('model accuracy') | |
plt.ylabel('accuracy') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'test'], loc='upper left') | |
plt.show() | |
plt.plot(his.history['loss']) | |
plt.plot(his.history['val_loss']) | |
plt.title('model loss') | |
plt.ylabel('loss') | |
plt.xlabel('epoch') | |
plt.legend(['train', 'test'], loc='upper left') | |
plt.show() | |
from sklearn import ensemble | |
model = ensemble.RandomForestRegressor(n_estimators=200, max_depth=10, min_samples_leaf=4, max_features=0.2, n_jobs=-1, random_state=0) | |
model.fit(csf_train, csf_age_train) | |
feat_names = em_csf_scaled2.columns.values | |
## plot the importances ## | |
importances = model.feature_importances_ | |
std = np.std([tree.feature_importances_ for tree in model.estimators_], axis=0) | |
indices = np.argsort(importances)[::-1][:20] | |
plt.figure(figsize=(12,12)) | |
plt.title("Feature importances") | |
plt.bar(range(len(indices)), importances[indices], color="r", align="center") | |
plt.xticks(range(len(indices)), feat_names[indices], rotation='vertical') | |
plt.xlim([-1, len(indices)]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment