Skip to content

Instantly share code, notes, and snippets.

View ajaymuktha's full-sized avatar
💻

Sai Ajay ajaymuktha

💻
View GitHub Profile
cnn.compile(optmizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
cnn.add(tf.keras.layers.Dense(units = 1, activation = 'sigmoid'))
cnn.add(tf.keras.layers.Dense(units = 128, activation = 'relu'))
cnn.add(tf.keras.layers.Flatten())
cnn.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = 3, activation_function = 'relu'))
cnn.add(tf.keras.layers.MaxPool2D(pool_size = 2, strides = 2)
cnn.add(tf.keras.layers.MaxPool2D(pool_size = 2, strides = 2)
cnn.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = 3, activation_function = 'relu', input_shape = (64,64,3))
cnn = tf.keras.models.Sequential()
test_set = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
test_datagen = ImageDataGenerator(rescale=1./255)