Skip to content

Instantly share code, notes, and snippets.

View ajaymuktha's full-sized avatar
💻

Sai Ajay ajaymuktha

💻
View GitHub Profile
train_generator = train_datagen.flow_from_directory(
'dataset/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
test_loss, test_accuracy = model.evaluate(X_test, y_test)
model.fit(X_train, y_train, epochs =5)
model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['sparse_categorical_accuracy'])
model.add(tf.keras.layers.Dense(units = 10, activation = 'softmax'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(units = 128, activation = 'relu', input_shape = (784,)))
model = tf.keras.models.Sequential()