Skip to content

Instantly share code, notes, and snippets.

View ajaymuktha's full-sized avatar
💻

Sai Ajay ajaymuktha

💻
View GitHub Profile
X_train = X_train.reshape(-1, 28*28)
X_test = X_test.reshape(-1, 28*28)
X_train = X_train/255.0
X_test = X_test/255.0
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
Scaffold{
appBar: AppBar()
body: Container(
child: Column(
children: [
Row(
Text(),
Icon(),
), /row
Text()
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)
dataset = pd.read_csv('Sales.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree = 4)
X_poly = poly_reg.fit_transform(X)
lin_reg_2 = LinearRegression()
lin_reg_2.fit(X_poly, Y)
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree = 4)
X_poly = poly_reg.fit_transform(X)