Skip to content

Instantly share code, notes, and snippets.

@ajbrock
Created April 29, 2017 14:04
Show Gist options
  • Star 15 You must be signed in to star a gist
  • Fork 3 You must be signed in to fork a gist
  • Save ajbrock/075c0ca4036dc4d8581990a6e76e07a3 to your computer and use it in GitHub Desktop.
Save ajbrock/075c0ca4036dc4d8581990a6e76e07a3 to your computer and use it in GitHub Desktop.
import math
from torch.optim.optimizer import Optimizer
# This version of Adam keeps an fp32 copy of the parameters and
# does all of the parameter updates in fp32, while still doing the
# forwards and backwards passes using fp16 (i.e. fp16 copies of the
# parameters and fp16 activations).
#
# Note that this calls .float().cuda() on the params such that it
# moves them to gpu 0--if you're using a different GPU or want to
# do multi-GPU you may need to deal with this.
class Adam16(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
params = list(params)
super(Adam16, self).__init__(params, defaults)
# for group in self.param_groups:
# for p in group['params']:
self.fp32_param_groups = [p.data.float().cuda() for p in params]
if not isinstance(self.fp32_param_groups[0], dict):
self.fp32_param_groups = [{'params': self.fp32_param_groups}]
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group,fp32_group in zip(self.param_groups,self.fp32_param_groups):
for p,fp32_p in zip(group['params'],fp32_group['params']):
if p.grad is None:
continue
grad = p.grad.data.float()
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = grad.new().resize_as_(grad).zero_()
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_()
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], fp32_p)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
# print(type(fp32_p))
fp32_p.addcdiv_(-step_size, exp_avg, denom)
p.data = fp32_p.half()
return loss
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment