Skip to content

Instantly share code, notes, and snippets.

@ajbrock
Created November 23, 2017 08:04
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save ajbrock/8f15ffc44db2080d8aeb5eb0f064a419 to your computer and use it in GitHub Desktop.
Save ajbrock/8f15ffc44db2080d8aeb5eb0f064a419 to your computer and use it in GitHub Desktop.
## Wide ResNet with Shift and incorrect hyperparams.
# Based on code by xternalz: https://github.com/xternalz/WideResNet-pytorch
# WRN by Sergey Zagoruyko and Nikos Komodakis
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable as V
import torch.optim as optim
import numpy as np
#torch.cat([torch.zeros(x.size(0),self.channels_per_group,1,x.size(2)).cuda()
# We'll allocate any leftover channels to the center group
class shift(nn.Module):
def __init__(self, in_planes, kernel_size=3):
super(shift, self).__init__()
self.in_planes = in_planes
self.kernel_size = kernel_size
self.channels_per_group = self.in_planes // (self.kernel_size**2)
# self.groups = self.in_planes // kernel_size
# Leave the final group in place
# We've actually reversed the tops+bottoms vs left+right (first spatial index being rows, second being columns). Oh well.
def forward(self,x):
# out = V(torch.zeros(x.size()).cuda())
x_pad = F.pad(x,(1,1,1,1))
# Alias for convenience
cpg = self.channels_per_group
# cat_layers = [torch.cat([V(torch.zeros(x.size(0),x.size(1),1,x.size(3)).cuda()),
# x[:, i * cpg : (i + 1) * cpg, :-1, :]],2)]
cat_layers =[]
# Bottom shift, grab the Top element
i = 0
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, :-2, 1:-1]]
# Top shift, grab the Bottom element
i = 1
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 2:, 1:-1]]
# Right shift, grab the left element
i = 2
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 1:-1, :-2]]
# Left shift, grab the right element
i = 3
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 1:-1, 2:]]
# Bottom Right shift, grab the Top left element
i = 4
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, :-2, :-2]]
# Bottom Left shift, grab the Top right element
i = 5
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, :-2, 2:]]
# Top Right shift, grab the Bottom Left element
i = 6
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 2:, :-2]]
# Top Left shift, grab the Bottom Right element
i = 7
cat_layers += [x_pad[:, i * cpg : (i + 1) * cpg, 2:, 2:]]
i = 8
cat_layers += [x_pad[:, i * cpg :, 1:-1, 1:-1]]
return torch.cat(cat_layers,1)
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate,E=9):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False)
self.conv2 = shift(out_planes)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(out_planes, out_planes, kernel_size=1, stride=1,
padding=0, bias=False)
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False) or None
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv2(self.conv1(out if self.equalInOut else x))))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv3(out)
out = torch.add(x if self.equalInOut else self.convShortcut(x), out)
# print(x.size(),out.size())
return out
# note: we call it DenseNet for simple compatibility with the training code.
# similar we call it growthRate instead of widen_factor
class Network(nn.Module):
def __init__(self, widen_factor, depth, nClasses, epochs, dropRate=0.0):
super(Network, self).__init__()
self.epochs = epochs
nChannels = [16, 16*widen_factor, 32*widen_factor, 64*widen_factor]
assert((depth - 4) % 6 == 0)
n = int((depth - 4) / 6)
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block
self.block1 = self._make_layer(n, nChannels[0], nChannels[1], block, 1, dropRate)
# 2nd block
self.block2 = self._make_layer(n, nChannels[1], nChannels[2], block, 2, dropRate)
# 3rd block
self.block3 = self._make_layer(n, nChannels[2], nChannels[3], block, 2, dropRate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], nClasses)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
# Optimizer
self.lr = 1e-1
self.optim = optim.SGD(params=self.parameters(),lr=self.lr,
nesterov=True,momentum=0.9,
weight_decay=1e-4)
# Iteration Counter
self.j = 0
# A simple dummy variable that indicates we are using an iteration-wise
# annealing scheme as opposed to epoch-wise.
self.lr_sched = {'itr':0}
def _make_layer(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
layers = []
for i in range(nb_layers):
layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
return nn.Sequential(*layers)
def update_lr(self, max_j):
for param_group in self.optim.param_groups:
param_group['lr'] = (0.5 * self.lr) * (1 + np.cos(np.pi * self.j / max_j))
self.j += 1
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, (out.size(2),out.size(3)))
out = out.view(-1, self.nChannels)
return F.log_softmax(self.fc(out))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment