Created
May 26, 2023 22:47
-
-
Save ajdamico/1de00db041e957099913bab893d0bf08 to your computer and use it in GitHub Desktop.
a hands-on introduction taught by william franz lamberti
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# support vector machines # | |
data(quakes) | |
plot( quakes , col = as.factor( round( quakes$mag ) ) ) | |
this_df <- quakes | |
this_df[ , 'mag' ] <- as.factor( round( this_df[ , 'mag' ] ) ) | |
library(e1071) | |
fit_linear <- svm( mag ~ . , data = this_df , kernel = 'linear' ) | |
plot( fit_linear , data = this_df , stations ~ depth ) | |
ypred <- predict( fit_linear , this_df ) | |
mean( ypred == this_df$mag ) | |
myfun <- | |
function( ... ) { | |
list( | |
linear = svm( ... , kernel = 'linear' ) , | |
sigmoid = svm( ... , kernel = 'sigmoid' ) , | |
radial = svm( ... , kernel = 'radial' ) , | |
polynomial = svm( ... , kernel = 'polynomial' ) | |
) | |
} | |
full_models <- myfun( mag ~ . , data = this_df ) | |
full_model_predictions <- | |
lapply( | |
full_models , | |
predict , | |
this_df | |
) | |
full_model_accuracy <- | |
lapply( | |
full_model_predictions , | |
function( w ) mean( w == this_df[ , 'mag' ] ) | |
) | |
full_model_tables <- | |
lapply( | |
full_model_predictions , | |
function( w ) table( predict = w , this_df[ , 'mag' ] ) | |
) | |
partial_models <- myfun( mag ~ depth + stations , data = this_df ) | |
partial_model_predictions <- | |
lapply( | |
partial_models , | |
predict , | |
this_df | |
) | |
partial_model_accuracy <- | |
lapply( | |
partial_model_predictions , | |
function( w ) mean( w == this_df[ , 'mag' ] ) | |
) | |
partial_model_tables <- | |
lapply( | |
partial_model_predictions , | |
function( w ) table( predict = w , this_df[ , 'mag' ] ) | |
) | |
# resampling methods for classification testing & training # | |
data(quakes) | |
this_df <- quakes | |
this_df[ , 'mag' ] <- as.factor( round( this_df[ , 'mag' ] ) ) | |
set.seed(2023) | |
training_vals <- | |
sample( | |
seq( nrow( this_df ) ) , | |
round( nrow( this_df ) * 0.7 ) , | |
replace = FALSE | |
) | |
training_df <- this_df[ training_vals , ] | |
testing_df <- this_df[ -training_vals , ] | |
library(e1071) | |
fit_radial <- svm( mag ~ . , data = training_df , kernel = 'radial' ) | |
predicted_train <- predict( fit_radial , training_df ) | |
table( predicted_train , training_df$mag ) | |
mean( predicted_train == training_df$mag ) | |
predicted_test <- predict( fit_radial , testing_df ) | |
table( predicted_test , testing_df$mag ) | |
mean( predicted_test == testing_df$mag ) | |
# cross-validation # | |
library(e1071) | |
data(quakes) | |
this_df <- quakes | |
this_df[ , 'mag' ] <- as.factor( round( this_df[ , 'mag' ] ) ) | |
set.seed(2023) | |
training_vals <- | |
sample( | |
seq( nrow( this_df ) ) , | |
round( nrow( this_df ) * 0.7 ) , | |
replace = FALSE | |
) | |
training_df <- this_df[ training_vals , ] | |
testing_df <- this_df[ -training_vals , ] | |
tc <- tune.control( cross = 10 ) | |
tune_out <- | |
tune( | |
svm , | |
mag ~ . , | |
data = training_df , | |
kernel = 'radial' , | |
ranges = list( gamma = c( 1 / ncol( training_df ) , 0.3 , 0.5 , 1 , 2 , 5 ) ) , | |
tunecontrol = tc | |
) | |
predicted_training <- predict( tune_out$best.model , training_df ) | |
mean( predicted_training == training_df$mag ) | |
predicted_testing <- predict( tune_out$best.model , testing_df ) | |
mean( predicted_testing == testing_df$mag ) | |
# trees # | |
library(rpart) | |
data(quakes) | |
set.seed(2023) | |
# regression | |
this_df <- quakes | |
training_records <- | |
sample( | |
seq( nrow( this_df ) ) , | |
round( nrow( this_df ) * 0.7 ) , | |
replace = FALSE | |
) | |
training_df <- this_df[ training_records , ] | |
testing_df <- this_df[ -training_records , ] | |
fit_anova <- | |
rpart( | |
mag ~ . , | |
data = training_df , | |
method = 'anova' | |
) | |
training_anova <- predict( fit_anova , training_df ) | |
rss <- sum( ( training_df$mag - training_anova )^2 ) | |
tss <- sum( ( training_df$mag - mean( training_df$mag ) )^2 ) | |
1 - ( rss / tss ) | |
testing_anova <- predict( fit_anova , testing_df ) | |
rss <- sum( ( testing_df$mag - testing_anova )^2 ) | |
tss <- sum( ( testing_df$mag - mean( testing_df$mag ) )^2 ) | |
1 - ( rss / tss ) | |
# classification | |
this_df <- quakes | |
this_df[ , 'mag' ] <- as.factor( round( this_df[ , 'mag' ] ) ) | |
training_df <- this_df[ training_records , ] | |
testing_df <- this_df[ -training_records , ] | |
fit_class <- | |
rpart( | |
mag ~ . , | |
data = training_df , | |
method = 'class' | |
) | |
training_class <- predict( fit_class , training_df , type = 'class' ) | |
mean( training_class == training_df$mag ) | |
testing_class <- predict( fit_class , testing_df , type = 'class' ) | |
mean( testing_class == testing_df$mag ) | |
# random forests # | |
library(randomForest) | |
data(quakes) | |
set.seed(2023) | |
this_df <- quakes | |
training_records <- | |
sample( | |
seq( nrow( this_df ) ) , | |
round( nrow( this_df ) * 0.7 ) , | |
replace = FALSE | |
) | |
this_df[ , 'mag' ] <- as.factor( round( this_df[ , 'mag' ] ) ) | |
training_df <- this_df[ training_records , ] | |
testing_df <- this_df[ -training_records , ] | |
fit_class <- | |
randomForest( | |
mag ~ . , | |
data = training_df | |
) | |
training_class <- predict( fit_class , training_df ) | |
mean( training_class == training_df$mag ) | |
testing_class <- predict( fit_class , testing_df ) | |
mean( testing_class == testing_df$mag ) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment