Skip to content

Instantly share code, notes, and snippets.

def mySqrt(self, x: int) -> int:
high = x
low = 0
while low <= high:
mid = low + (high-low)//2
if mid * mid == x:
return mid
if mid * mid < x and (mid+1)*(mid+1) > x:
return mid
# estimate sample size via power analysis
# We will use the statsmodels library to calculate the sample size.
from statsmodels.stats.power import TTestIndPower
# define parameters
effectsize = 0.1
alpha = 0.05
power = 0.8
# Statistical Power calculations for t-test for two independent sample
model = TTestIndPower()
samplesize = model.solve_power(effectsize, power=power, nobs1=None, ratio=1.0, alpha=alpha)
import requests
from wordcloud import WordCloud
import urllib3
import re
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
artist = input('Input artist name (default = Michael Jackson): ') or "Michael Jackson"
song = input('Input song name (default = Bad): ') or "Bad"
artist = artist.replace(' ','%2520')
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
X_plot = np.linspace(130, 210, 1000)[:, np.newaxis]
mu1 = 178
mu2 = 163
sigma1 = 7.7
sigma2 = 7.3
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import imageio
from scipy.stats import norm
def plot_for_offset(mu1, y_max):
X_plot = np.linspace(-2, 12, 1000)[:, np.newaxis]
mu2 = 5
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats
from random import uniform
p = scipy.stats.norm(0,1)
n = 50000
int_val = [0]*n
mean_val = [0]*n
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats
f_x = scipy.stats.randint(1,7)
def g_x(x):
return (7-x)/10/2.1
E_g = np.dot(np.linspace(1,6,6),g_x(np.linspace(1,6,6)))
z = scipy.stats.norm.ppf(1-(1-0.95)/2)
print(f'Z-score for 95% confidence interval = {z:0.3f}')
moe = z*std_err
print (f'Margin of error={moe:.3f}')
max_x_mean = np.mean(max_x)
std_err = np.std(max_x)/n**0.5
conf_int = np.percentile(max_x, [2.5,97.5])
print (f'mean of theta = {max_x_mean:.4f}')
print (f'Standard error of theta = {std_err:.4f}')
print (f'95% Confidence interval of theta = {conf_int}')
max_x = []
for iter in range(1000):
sample = rv.rvs(n)
n1 = sum(sample == 0)
n2 = n - n1
x = np.linspace(0,1,100)
L = x**n2 * (1-x)**n1
curr_max_x = scipy.optimize.fmin(lambda x: -(x**n2 * (1-x)**n1), 0, disp=False)
max_x.append(curr_max_x[0])