This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package decisiontrees | |
import ( | |
"code.google.com/p/goprotobuf/proto" | |
pb "github.com/ajtulloch/decisiontrees/protobufs" | |
"github.com/golang/glog" | |
"time" | |
) | |
type boostingTreeGenerator struct { | |
forestConfig *pb.ForestConfig | |
forest *pb.Forest | |
} | |
func (b *boostingTreeGenerator) doInfluenceTrimming(e Examples) Examples { | |
lossFunction := b.getLossFunction() | |
by(func(e1, e2 *pb.Example) bool { | |
return lossFunction.GetSampleImportance(e1) < lossFunction.GetSampleImportance(e2) | |
}).Sort(e) | |
// Find cutoff point | |
weightSum := 0.0 | |
for _, ex := range e { | |
weightSum += lossFunction.GetSampleImportance(ex) | |
} | |
cutoffPointSum := b.forestConfig.GetInfluenceTrimmingConfig().GetAlpha() * weightSum | |
cutoffPoint, cumulativeSum := 0, 0.0 | |
for i, ex := range e { | |
cutoffPoint = i | |
if cumulativeSum < cutoffPointSum { | |
break | |
} | |
cumulativeSum += lossFunction.GetSampleImportance(ex) | |
} | |
return e[cutoffPoint:] | |
} | |
func (b *boostingTreeGenerator) updateExampleWeights(e Examples) { | |
b.getLossFunction().UpdateWeightedLabels(e) | |
} | |
func (b *boostingTreeGenerator) constructWeakLearner(e Examples) { | |
weakLearner := (®ressionSplitter{ | |
leafWeight: func(e Examples) float64 { | |
return b.getLossFunction().GetLeafWeight(e) | |
}, | |
featureSelector: naiveFeatureSelector{}, | |
splittingConstraints: b.forestConfig.GetSplittingConstraints(), | |
shrinkageConfig: b.forestConfig.GetShrinkageConfig(), | |
}).GenerateTree(e) | |
b.forest.Trees = append(b.forest.Trees, weakLearner) | |
} | |
func (b *boostingTreeGenerator) doBoostingRound(e Examples, round int) { | |
startTime := time.Now() | |
defer func() { | |
glog.Infof("Round %v, duration %v", round, time.Now().Sub(startTime)) | |
}() | |
if b.forestConfig.GetStochasticityConfig() != nil { | |
e = e.subsampleExamples(b.forestConfig.GetStochasticityConfig().GetPerRoundSamplingRate()) | |
} | |
// Trim the low-sample influencers | |
if b.forestConfig.GetInfluenceTrimmingConfig() != nil && | |
b.forestConfig.GetInfluenceTrimmingConfig().GetWarmupRounds() < int64(round) { | |
e = b.doInfluenceTrimming(e) | |
} | |
b.updateExampleWeights(e) | |
b.constructWeakLearner(e) | |
metrics := b.computeTrainingMetrics(e) | |
glog.Infof("Epoch: %v, Metrics: %+v", round, metrics) | |
} | |
func (b *boostingTreeGenerator) computeTrainingMetrics(e Examples) pb.EpochResult { | |
evaluator, err := NewRescaledFastForestEvaluator(b.forest) | |
if err != nil { | |
glog.Fatal(err) | |
} | |
return computeEpochResult(evaluator, e) | |
} | |
func (b *boostingTreeGenerator) getLossFunction() LossFunction { | |
evaluator, err := newUnscaledFastForestEvaluator(b.forest) | |
if err != nil { | |
glog.Fatal(err) | |
} | |
return NewLossFunction(b.forestConfig.GetLossFunctionConfig(), evaluator) | |
} | |
func (b *boostingTreeGenerator) getRescaling() pb.Rescaling { | |
if b.forestConfig.GetLossFunctionConfig().GetLossFunction() == pb.LossFunction_LOGIT { | |
return pb.Rescaling_LOG_ODDS | |
} | |
return pb.Rescaling_NONE | |
} | |
func (b *boostingTreeGenerator) initializeForest(e Examples) { | |
b.forest = &pb.Forest{ | |
Trees: make([]*pb.TreeNode, 0, b.forestConfig.GetNumWeakLearners()), | |
Rescaling: b.getRescaling().Enum(), | |
} | |
// Initial prior | |
b.forest.Trees = append(b.forest.Trees, &pb.TreeNode{ | |
LeafValue: proto.Float64(b.getLossFunction().GetPrior(e)), | |
}) | |
} | |
func (b *boostingTreeGenerator) ConstructForest(e Examples) *pb.Forest { | |
glog.Infof("Initializing forest with config %+v", b.forestConfig) | |
b.initializeForest(e) | |
for i := 0; i < int(b.forestConfig.GetNumWeakLearners()); i++ { | |
glog.Infof("Running boosting round %v", i) | |
b.doBoostingRound(e, i) | |
} | |
return b.forest | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment