Created
November 26, 2013 09:10
-
-
Save ajtulloch/7655467 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import svmpy | |
import logging | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.cm as cm | |
import itertools | |
import argh | |
def example(num_samples=10, num_features=2, grid_size=20, filename="svm.pdf"): | |
samples = np.matrix(np.random.normal(size=num_samples * num_features) | |
.reshape(num_samples, num_features)) | |
labels = 2 * (samples.sum(axis=1) > 0) - 1.0 | |
trainer = svmpy.SVMTrainer(svmpy.Kernel.linear(), 0.1) | |
predictor = trainer.train(samples, labels) | |
plot(predictor, samples, labels, grid_size, filename) | |
def plot(predictor, X, y, grid_size, filename): | |
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 | |
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 | |
xx, yy = np.meshgrid(np.linspace(x_min, x_max, grid_size), | |
np.linspace(y_min, y_max, grid_size), | |
indexing='ij') | |
flatten = lambda m: np.array(m).reshape(-1,) | |
result = [] | |
for (i, j) in itertools.product(range(grid_size), range(grid_size)): | |
point = np.array([xx[i, j], yy[i, j]]).reshape(1, 2) | |
result.append(predictor.predict(point)) | |
Z = np.array(result).reshape(xx.shape) | |
plt.contourf(xx, yy, Z, | |
cmap=cm.Paired, | |
levels=[-0.001, 0.001], | |
extend='both', | |
alpha=0.8) | |
plt.scatter(flatten(X[:, 0]), flatten(X[:, 1]), | |
c=flatten(y), cmap=cm.Paired) | |
plt.xlim(x_min, x_max) | |
plt.ylim(y_min, y_max) | |
plt.savefig(filename) | |
if __name__ == "__main__": | |
logging.basicConfig(level=logging.ERROR) | |
argh.dispatch_command(example) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment