Skip to content

Instantly share code, notes, and snippets.

@akki2825
Created January 28, 2017 15:12
Show Gist options
  • Save akki2825/1df84abb090c372034e34cae096724aa to your computer and use it in GitHub Desktop.
Save akki2825/1df84abb090c372034e34cae096724aa to your computer and use it in GitHub Desktop.
from __future__ import print_function
import numpy as np
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# loop over test data
for i in range(len(Xte)):
# Get nearest neighbor
nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]})
# Get nearest neighbor class label and compare it to its true label
print("Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \
"True Class:", np.argmax(Yte[i]))
# Calculate accuracy
if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
accuracy += 1./len(Xte)
print("Done!")
print("Accuracy:", accuracy)
wp_embed_register_handler( 'gist', '/https?:\/\/gist\.github\.com\/([a-z0-9]+)(\?file=.*)?/i', 'bhww_embed_handler_gist' );
function bhww_embed_handler_gist( $matches, $attr, $url, $rawattr ) {
$embed = sprintf(
'<script src="https://gist.github.com/%1$s.js%2$s"></script>',
esc_attr($matches[1]),
esc_attr($matches[2])
);
return apply_filters( 'embed_gist', $embed, $matches, $attr, $url, $rawattr );
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment