Last active
September 10, 2020 23:44
-
-
Save akshayuppal3/14950d79dce838ade833d9772fb871da to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_attention_model(vocab_size, embedding_matrix, embed_size=100): | |
word_input = Input(shape=(MAX_WORD_LEN,), dtype='int32', name='word_input') | |
word_sequence = Embedding( | |
vocab_size, | |
embed_size, | |
input_length=MAX_WORD_LEN, # length of sentences in doc | |
weights=[embedding_matrix], | |
trainable=False)(word_input) | |
## attention at words | |
word_gru = Bidirectional(GRU( | |
50, | |
activation="tanh", | |
recurrent_activation="sigmoid", | |
use_bias=True, | |
kernel_initializer="glorot_uniform", | |
recurrent_initializer="orthogonal", | |
return_sequences=True))(word_sequence) | |
word_dense = Dense(100, activation='relu', name="word_dense")(word_gru) | |
word_att, word_coeff = AttentionLayer(embed_size, True, name="word_attention")(word_dense) | |
word_encoder = Model(inputs=word_input, outputs=word_att, name="word_encoder") | |
## attention at sentence level | |
sent_input = Input(shape=(MAX_SENTENCE_LEN, MAX_WORD_LEN), dtype='int32', name='sent_input') | |
sent_encoder = TimeDistributed(word_encoder, name="sent_linking")(sent_input) | |
sent_gru = Bidirectional(GRU( | |
50, | |
return_sequences=True))(sent_encoder) | |
sent_dense = Dense(100, activation="relu", name="sent_dense")(sent_gru) | |
sent_att, sent_coeff = AttentionLayer(embed_size, True, name="sent_attention")(sent_dense) | |
sent_drop = Dropout(0.5)(sent_att) | |
preds = Dense(1, activation="softmax", name="prediction")(sent_drop) | |
# # model | |
han_model = Model(sent_input, preds, name="han_model") | |
han_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) | |
print(word_encoder.summary()) | |
print(han_model.summary()) | |
return han_model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment