Skip to content

Instantly share code, notes, and snippets.

@aldur
Last active August 29, 2015 14:23
Show Gist options
  • Save aldur/f01e06a9f5eee1616ae9 to your computer and use it in GitHub Desktop.
Save aldur/f01e06a9f5eee1616ae9 to your computer and use it in GitHub Desktop.
Q-Learner Agent - Maja Machine Learning Framework

Q-Learner Agent - MMLF

Place the agent in your mmlf/agents directory. Place the configuration file in ~/.mmlf/config.

Run with: ./run_mmlf --config world_simple_q.yaml.

"""MMLF agent that implements Q-Learning. """
__author__ = "Adriano Di Luzio & Danilo Francati"
__copyright__ = "Copyright 2015, Sapienza University of Rome, CS"
__credits__ = ['Mark Edgington']
__license__ = "GPLv3"
__version__ = "1.0"
__maintainer__ = "Adriano Di Luzio"
__email__ = "adrianodl@hotmail.it"
import random
import pprint
import mmlf.framework.protocol
from mmlf.agents.agent_base import AgentBase
# Each agent has to inherit directly or indirectly from AgentBase
class QAgent(AgentBase):
"""Agent that chooses the next action in order to maximize the expected reward."""
# Add default configuration for this agent to this static dict
# This specific parameter controls after how many steps we send information
# regarding the accumulated reward to the logger.
DEFAULT_CONFIG_DICT = {
'epsilon': 0.5, # Probability of action
'gamma': 0.9, # Reward distance
}
def __init__(self, *args, **kwargs):
# Create the agent info
self.agentInfo = \
mmlf.framework.protocol.AgentInfo(
# Which communication protocol
# version can the agent handle?
versionNumber="0.3",
# Name of the agent (can be chosen arbitrarily)
agentName="Q",
# Can the agent be used in
# environments with continuous
# state spaces?
continuousState=False,
# Can the agent be used in
# environments with continuous
# action spaces?
continuousAction=False,
# Can the agent be used in
# environments with discrete
# action spaces?
discreteAction=True,
# Can the agent be used in
# non-episodic environments
nonEpisodicCapable=False
)
# Calls constructor of base class
# After this call, the agent has an attribute "self.configDict",
# The values of this dict are evaluated, i.e. instead of '100' (string),
# the key 'Reward log frequency' will have the same value 100 (int).
super(QAgent, self).__init__(*args, **kwargs)
# The superclass AgentBase implements the methods setStateSpace() and
# setActionSpace() which set the attributes stateSpace and actionSpace
# They can be overwritten if the agent has to modify these spaces
# for some reason
self.stateSpace = None
self.actionSpace = None
# The exploration rate of the agent
self.gamma = self.configDict.get('gamma', 0.9)
self.epsilon = self.configDict.get('epsilon', 0.5)
# The Q matrix
self.Q = None
# ##################### BEGIN COMMAND-HANDLING METHODS ###################
def setStateSpace(self, stateSpace):
""" Informs the agent about the state space of the environment
More information about state spaces can be found in
:ref:`state_and_action_spaces`
"""
super(QAgent, self).setStateSpace(stateSpace)
# Get a list of all the possible spaces
self.states = self.stateSpace.getStateList()
def setActionSpace(self, actionSpace):
"""Informs the agent about the action space of the environment
More information about action spaces can be found in
:ref:`state_and_action_spaces`
"""
super(QAgent, self).setActionSpace(actionSpace)
# We can only deal with one-dimensional action spaces
assert self.actionSpace.getNumberOfDimensions() == 1, \
"Action space must be one-dimensional"
# Get a list of all actions this agent might take
self.actions = self.actionSpace.getActionList()
# Init the Q matrix
self._initQ()
def getAction(self):
"""Request the next action the agent want to execute."""
self.previousAction = self.lastAction
self.previousState = self.lastState
# Each action of the agent corresponds to one step
self.action = self._chooseRandomAction()
# Create an action dictionary
# that maps action dimension to chosen action
actionDictionary = dict()
for index, actionName in enumerate(self.actionSpace.iterkeys()):
actionDictionary[actionName] = self.action[index]
# Call super class method since this updates some internal information
# (self.lastState, self.lastAction, self.reward, self.state, self.action)
super(QAgent, self).getAction()
return self._generateActionObject(actionDictionary)
def giveReward(self, reward):
"""Provides a reward to the agent """
self._updateQ(reward)
def nextEpisodeStarted(self):
"""Informs the agent that a new episode has started."""
# We delegate to the superclass, which does the following:
# self.episodeCounter += 1
# self.stepCounter = 0
super(QAgent, self).nextEpisodeStarted()
self.agentLog.info("Q matrix: \n%s", pprint.pformat(self.Q))
# ####################### END COMMAND-HANDLING METHODS ###################
def _initQ(self):
"""Initialize the Q matrix
Build a dictionary whose keys are the possible spaces.
Each value is again a dictionary, whose keys are the possible actions.
Finally, the values are the Q values.
"""
# If the stateSpace has been set, create the spaces in Q
if self.states:
self.Q = {s: None for s in self.states}
# If the actionSpace has been set, create the actions
# for each state in already Q
if self.actions:
for s in self.Q:
self.Q[s] = {a: 0 for a in self.actions}
self.agentLog.info("New Q matrix: \n%s", pprint.pformat(self.Q))
def _chooseRandomAction(self):
"Chooses an action randomly from the action space"
assert self.actionSpace, \
"Error: Action requested before actionSpace was specified"
return random.choice(self.actions)
def _updateQ(self, reward):
"Update the Q value after an action from a state."
# self.agentLog.info("%s -> %s", self.previousState, self.previousAction)
# self.agentLog.info("%s -> %s", self.lastState, self.lastAction)
if self.previousState is not None and \
self.previousAction is not None:
# Update the Q value
self.Q[self.previousState][self.previousAction] = \
(1 - self.epsilon) * self.Q[self.previousState][self.previousAction] + \
self.epsilon * \
(reward + self.gamma * (max(self.Q[self.lastState].values())))
# Each module that implements an agent must have a module-level attribute
# "AgentClass" that is set to the class that inherits from Agentbase
AgentClass = QAgent
# Furthermore, the name of the agent has to be assigned to "AgentName". This
# name is used in the GUI.
AgentName = "Q"
worldPackage : maze2d
environment:
moduleName : "maze2d_environment"
configDict:
episodesUntilDoorChange : 10000
MAZE : "maze_simple.cfg"
agent:
moduleName : "academic_agent"
configDict:
gamma : 0.9
epsilon : 0.5
monitor:
policyLogFrequency : 1000
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment