Skip to content

Instantly share code, notes, and snippets.

@alexeygolev
Created August 3, 2015 11:38
Show Gist options
  • Save alexeygolev/2497f76b8799facb9066 to your computer and use it in GitHub Desktop.
Save alexeygolev/2497f76b8799facb9066 to your computer and use it in GitHub Desktop.
(function webpackUniversalModuleDefinition(root, factory) {
if(typeof exports === 'object' && typeof module === 'object')
module.exports = factory();
else if(typeof define === 'function' && define.amd)
define(factory);
else if(typeof exports === 'object')
exports["fantasy"] = factory();
else
root["fantasy"] = factory();
})(this, function() {
return /******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId])
/******/ return installedModules[moduleId].exports;
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ exports: {},
/******/ id: moduleId,
/******/ loaded: false
/******/ };
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/ // Flag the module as loaded
/******/ module.loaded = true;
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/ // Load entry module and return exports
/******/ return __webpack_require__(0);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ function(module, exports, __webpack_require__) {
module.exports = {
Either: __webpack_require__(3),
Future: __webpack_require__(4),
Identity: __webpack_require__(6),
IO: __webpack_require__(5),
lift2: __webpack_require__(10),
lift3: __webpack_require__(11),
Maybe: __webpack_require__(7),
Tuple: __webpack_require__(9),
Reader: __webpack_require__(8)
};
/***/ },
/* 1 */
/***/ function(module, exports, __webpack_require__) {
// Ramda v0.15.1
// https://github.com/ramda/ramda
// (c) 2013-2015 Scott Sauyet, Michael Hurley, and David Chambers
// Ramda may be freely distributed under the MIT license.
;(function() {
'use strict';
/**
* A special placeholder value used to specify "gaps" within curried functions,
* allowing partial application of any combination of arguments,
* regardless of their positions.
*
* If `g` is a curried ternary function and `_` is `R.__`, the following are equivalent:
*
* - `g(1, 2, 3)`
* - `g(_, 2, 3)(1)`
* - `g(_, _, 3)(1)(2)`
* - `g(_, _, 3)(1, 2)`
* - `g(_, 2, _)(1, 3)`
* - `g(_, 2)(1)(3)`
* - `g(_, 2)(1, 3)`
* - `g(_, 2)(_, 3)(1)`
*
* @constant
* @memberOf R
* @category Function
* @example
*
* var greet = R.replace('{name}', R.__, 'Hello, {name}!');
* greet('Alice'); //=> 'Hello, Alice!'
*/
var __ = { '@@functional/placeholder': true };
var _add = function _add(a, b) {
return a + b;
};
var _all = function _all(fn, list) {
var idx = 0;
while (idx < list.length) {
if (!fn(list[idx])) {
return false;
}
idx += 1;
}
return true;
};
var _any = function _any(fn, list) {
var idx = 0;
while (idx < list.length) {
if (fn(list[idx])) {
return true;
}
idx += 1;
}
return false;
};
var _assoc = function _assoc(prop, val, obj) {
var result = {};
for (var p in obj) {
result[p] = obj[p];
}
result[prop] = val;
return result;
};
var _cloneRegExp = function _cloneRegExp(pattern) {
return new RegExp(pattern.source, (pattern.global ? 'g' : '') + (pattern.ignoreCase ? 'i' : '') + (pattern.multiline ? 'm' : '') + (pattern.sticky ? 'y' : '') + (pattern.unicode ? 'u' : ''));
};
var _complement = function _complement(f) {
return function () {
return !f.apply(this, arguments);
};
};
/**
* Basic, right-associative composition function. Accepts two functions and returns the
* composite function; this composite function represents the operation `var h = f(g(x))`,
* where `f` is the first argument, `g` is the second argument, and `x` is whatever
* argument(s) are passed to `h`.
*
* This function's main use is to build the more general `compose` function, which accepts
* any number of functions.
*
* @private
* @category Function
* @param {Function} f A function.
* @param {Function} g A function.
* @return {Function} A new function that is the equivalent of `f(g(x))`.
* @example
*
* var double = function(x) { return x * 2; };
* var square = function(x) { return x * x; };
* var squareThenDouble = _compose(double, square);
*
* squareThenDouble(5); //≅ double(square(5)) => 50
*/
var _compose = function _compose(f, g) {
return function () {
return f.call(this, g.apply(this, arguments));
};
};
/**
* Private `concat` function to merge two array-like objects.
*
* @private
* @param {Array|Arguments} [set1=[]] An array-like object.
* @param {Array|Arguments} [set2=[]] An array-like object.
* @return {Array} A new, merged array.
* @example
*
* _concat([4, 5, 6], [1, 2, 3]); //=> [4, 5, 6, 1, 2, 3]
*/
var _concat = function _concat(set1, set2) {
set1 = set1 || [];
set2 = set2 || [];
var idx;
var len1 = set1.length;
var len2 = set2.length;
var result = [];
idx = 0;
while (idx < len1) {
result[result.length] = set1[idx];
idx += 1;
}
idx = 0;
while (idx < len2) {
result[result.length] = set2[idx];
idx += 1;
}
return result;
};
var _containsWith = function _containsWith(pred, x, list) {
var idx = 0, len = list.length;
while (idx < len) {
if (pred(x, list[idx])) {
return true;
}
idx += 1;
}
return false;
};
var _createMapEntry = function _createMapEntry(key, val) {
var obj = {};
obj[key] = val;
return obj;
};
/**
* Create a function which takes a comparator function and a list
* and determines the winning value by a compatator. Used internally
* by `R.maxBy` and `R.minBy`
*
* @private
* @param {Function} compatator a function to compare two items
* @category Math
* @return {Function}
*/
var _createMaxMinBy = function _createMaxMinBy(comparator) {
return function (valueComputer, list) {
if (!(list && list.length > 0)) {
return;
}
var idx = 1;
var winner = list[idx];
var computedWinner = valueComputer(winner);
var computedCurrent;
while (idx < list.length) {
computedCurrent = valueComputer(list[idx]);
if (comparator(computedCurrent, computedWinner)) {
computedWinner = computedCurrent;
winner = list[idx];
}
idx += 1;
}
return winner;
};
};
/**
* Optimized internal two-arity curry function.
*
* @private
* @category Function
* @param {Function} fn The function to curry.
* @return {Function} The curried function.
*/
var _curry1 = function _curry1(fn) {
return function f1(a) {
if (arguments.length === 0) {
return f1;
} else if (a != null && a['@@functional/placeholder'] === true) {
return f1;
} else {
return fn(a);
}
};
};
/**
* Optimized internal two-arity curry function.
*
* @private
* @category Function
* @param {Function} fn The function to curry.
* @return {Function} The curried function.
*/
var _curry2 = function _curry2(fn) {
return function f2(a, b) {
var n = arguments.length;
if (n === 0) {
return f2;
} else if (n === 1 && a != null && a['@@functional/placeholder'] === true) {
return f2;
} else if (n === 1) {
return _curry1(function (b) {
return fn(a, b);
});
} else if (n === 2 && a != null && a['@@functional/placeholder'] === true && b != null && b['@@functional/placeholder'] === true) {
return f2;
} else if (n === 2 && a != null && a['@@functional/placeholder'] === true) {
return _curry1(function (a) {
return fn(a, b);
});
} else if (n === 2 && b != null && b['@@functional/placeholder'] === true) {
return _curry1(function (b) {
return fn(a, b);
});
} else {
return fn(a, b);
}
};
};
/**
* Optimized internal three-arity curry function.
*
* @private
* @category Function
* @param {Function} fn The function to curry.
* @return {Function} The curried function.
*/
var _curry3 = function _curry3(fn) {
return function f3(a, b, c) {
var n = arguments.length;
if (n === 0) {
return f3;
} else if (n === 1 && a != null && a['@@functional/placeholder'] === true) {
return f3;
} else if (n === 1) {
return _curry2(function (b, c) {
return fn(a, b, c);
});
} else if (n === 2 && a != null && a['@@functional/placeholder'] === true && b != null && b['@@functional/placeholder'] === true) {
return f3;
} else if (n === 2 && a != null && a['@@functional/placeholder'] === true) {
return _curry2(function (a, c) {
return fn(a, b, c);
});
} else if (n === 2 && b != null && b['@@functional/placeholder'] === true) {
return _curry2(function (b, c) {
return fn(a, b, c);
});
} else if (n === 2) {
return _curry1(function (c) {
return fn(a, b, c);
});
} else if (n === 3 && a != null && a['@@functional/placeholder'] === true && b != null && b['@@functional/placeholder'] === true && c != null && c['@@functional/placeholder'] === true) {
return f3;
} else if (n === 3 && a != null && a['@@functional/placeholder'] === true && b != null && b['@@functional/placeholder'] === true) {
return _curry2(function (a, b) {
return fn(a, b, c);
});
} else if (n === 3 && a != null && a['@@functional/placeholder'] === true && c != null && c['@@functional/placeholder'] === true) {
return _curry2(function (a, c) {
return fn(a, b, c);
});
} else if (n === 3 && b != null && b['@@functional/placeholder'] === true && c != null && c['@@functional/placeholder'] === true) {
return _curry2(function (b, c) {
return fn(a, b, c);
});
} else if (n === 3 && a != null && a['@@functional/placeholder'] === true) {
return _curry1(function (a) {
return fn(a, b, c);
});
} else if (n === 3 && b != null && b['@@functional/placeholder'] === true) {
return _curry1(function (b) {
return fn(a, b, c);
});
} else if (n === 3 && c != null && c['@@functional/placeholder'] === true) {
return _curry1(function (c) {
return fn(a, b, c);
});
} else {
return fn(a, b, c);
}
};
};
var _dissoc = function _dissoc(prop, obj) {
var result = {};
for (var p in obj) {
if (p !== prop) {
result[p] = obj[p];
}
}
return result;
};
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is#Polyfill
// SameValue algorithm
// Steps 1-5, 7-10
// Steps 6.b-6.e: +0 != -0
// Step 6.a: NaN == NaN
var _eq = function _eq(x, y) {
// SameValue algorithm
if (x === y) {
// Steps 1-5, 7-10
// Steps 6.b-6.e: +0 != -0
return x !== 0 || 1 / x === 1 / y;
} else {
// Step 6.a: NaN == NaN
return x !== x && y !== y;
}
};
var _filter = function _filter(fn, list) {
var idx = 0, len = list.length, result = [];
while (idx < len) {
if (fn(list[idx])) {
result[result.length] = list[idx];
}
idx += 1;
}
return result;
};
var _filterIndexed = function _filterIndexed(fn, list) {
var idx = 0, len = list.length, result = [];
while (idx < len) {
if (fn(list[idx], idx, list)) {
result[result.length] = list[idx];
}
idx += 1;
}
return result;
};
// i can't bear not to return *something*
var _forEach = function _forEach(fn, list) {
var idx = 0, len = list.length;
while (idx < len) {
fn(list[idx]);
idx += 1;
}
// i can't bear not to return *something*
return list;
};
var _forceReduced = function _forceReduced(x) {
return {
'@@transducer/value': x,
'@@transducer/reduced': true
};
};
/**
* @private
* @param {Function} fn The strategy for extracting function names from an object
* @return {Function} A function that takes an object and returns an array of function names.
*/
var _functionsWith = function _functionsWith(fn) {
return function (obj) {
return _filter(function (key) {
return typeof obj[key] === 'function';
}, fn(obj));
};
};
var _gt = function _gt(a, b) {
return a > b;
};
var _has = function _has(prop, obj) {
return Object.prototype.hasOwnProperty.call(obj, prop);
};
var _identity = function _identity(x) {
return x;
};
/**
* Tests whether or not an object is an array.
*
* @private
* @param {*} val The object to test.
* @return {Boolean} `true` if `val` is an array, `false` otherwise.
* @example
*
* _isArray([]); //=> true
* _isArray(null); //=> false
* _isArray({}); //=> false
*/
var _isArray = Array.isArray || function _isArray(val) {
return val != null && val.length >= 0 && Object.prototype.toString.call(val) === '[object Array]';
};
/**
* Determine if the passed argument is an integer.
*
* @private
* @param {*} n
* @category Type
* @return {Boolean}
*/
var _isInteger = Number.isInteger || function _isInteger(n) {
return n << 0 === n;
};
/**
* Tests if a value is a thenable (promise).
*/
var _isThenable = function _isThenable(value) {
return value != null && value === Object(value) && typeof value.then === 'function';
};
var _isTransformer = function _isTransformer(obj) {
return typeof obj['@@transducer/step'] === 'function';
};
var _lt = function _lt(a, b) {
return a < b;
};
var _map = function _map(fn, list) {
var idx = 0, len = list.length, result = [];
while (idx < len) {
result[idx] = fn(list[idx]);
idx += 1;
}
return result;
};
var _multiply = function _multiply(a, b) {
return a * b;
};
var _nth = function _nth(n, list) {
return n < 0 ? list[list.length + n] : list[n];
};
/**
* internal path function
* Takes an array, paths, indicating the deep set of keys
* to find.
*
* @private
* @memberOf R
* @category Object
* @param {Array} paths An array of strings to map to object properties
* @param {Object} obj The object to find the path in
* @return {Array} The value at the end of the path or `undefined`.
* @example
*
* _path(['a', 'b'], {a: {b: 2}}); //=> 2
*/
var _path = function _path(paths, obj) {
if (obj == null) {
return;
} else {
var val = obj;
for (var idx = 0, len = paths.length; idx < len && val != null; idx += 1) {
val = val[paths[idx]];
}
return val;
}
};
var _prepend = function _prepend(el, list) {
return _concat([el], list);
};
var _quote = function _quote(s) {
return '"' + s.replace(/"/g, '\\"') + '"';
};
var _reduced = function _reduced(x) {
return x && x['@@transducer/reduced'] ? x : {
'@@transducer/value': x,
'@@transducer/reduced': true
};
};
/**
* An optimized, private array `slice` implementation.
*
* @private
* @param {Arguments|Array} args The array or arguments object to consider.
* @param {Number} [from=0] The array index to slice from, inclusive.
* @param {Number} [to=args.length] The array index to slice to, exclusive.
* @return {Array} A new, sliced array.
* @example
*
* _slice([1, 2, 3, 4, 5], 1, 3); //=> [2, 3]
*
* var firstThreeArgs = function(a, b, c, d) {
* return _slice(arguments, 0, 3);
* };
* firstThreeArgs(1, 2, 3, 4); //=> [1, 2, 3]
*/
var _slice = function _slice(args, from, to) {
switch (arguments.length) {
case 1:
return _slice(args, 0, args.length);
case 2:
return _slice(args, from, args.length);
default:
var list = [];
var idx = 0;
var len = Math.max(0, Math.min(args.length, to) - from);
while (idx < len) {
list[idx] = args[from + idx];
idx += 1;
}
return list;
}
};
/**
* Polyfill from <https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString>.
*/
var _toISOString = function () {
var pad = function pad(n) {
return (n < 10 ? '0' : '') + n;
};
return typeof Date.prototype.toISOString === 'function' ? function _toISOString(d) {
return d.toISOString();
} : function _toISOString(d) {
return d.getUTCFullYear() + '-' + pad(d.getUTCMonth() + 1) + '-' + pad(d.getUTCDate()) + 'T' + pad(d.getUTCHours()) + ':' + pad(d.getUTCMinutes()) + ':' + pad(d.getUTCSeconds()) + '.' + (d.getUTCMilliseconds() / 1000).toFixed(3).slice(2, 5) + 'Z';
};
}();
var _xdropRepeatsWith = function () {
function XDropRepeatsWith(pred, xf) {
this.xf = xf;
this.pred = pred;
this.lastValue = undefined;
this.seenFirstValue = false;
}
XDropRepeatsWith.prototype['@@transducer/init'] = function () {
return this.xf['@@transducer/init']();
};
XDropRepeatsWith.prototype['@@transducer/result'] = function (result) {
return this.xf['@@transducer/result'](result);
};
XDropRepeatsWith.prototype['@@transducer/step'] = function (result, input) {
var sameAsLast = false;
if (!this.seenFirstValue) {
this.seenFirstValue = true;
} else if (this.pred(this.lastValue, input)) {
sameAsLast = true;
}
this.lastValue = input;
return sameAsLast ? result : this.xf['@@transducer/step'](result, input);
};
return _curry2(function _xdropRepeatsWith(pred, xf) {
return new XDropRepeatsWith(pred, xf);
});
}();
var _xfBase = {
init: function () {
return this.xf['@@transducer/init']();
},
result: function (result) {
return this.xf['@@transducer/result'](result);
}
};
var _xfilter = function () {
function XFilter(f, xf) {
this.xf = xf;
this.f = f;
}
XFilter.prototype['@@transducer/init'] = _xfBase.init;
XFilter.prototype['@@transducer/result'] = _xfBase.result;
XFilter.prototype['@@transducer/step'] = function (result, input) {
return this.f(input) ? this.xf['@@transducer/step'](result, input) : result;
};
return _curry2(function _xfilter(f, xf) {
return new XFilter(f, xf);
});
}();
var _xfind = function () {
function XFind(f, xf) {
this.xf = xf;
this.f = f;
this.found = false;
}
XFind.prototype['@@transducer/init'] = _xfBase.init;
XFind.prototype['@@transducer/result'] = function (result) {
if (!this.found) {
result = this.xf['@@transducer/step'](result, void 0);
}
return this.xf['@@transducer/result'](result);
};
XFind.prototype['@@transducer/step'] = function (result, input) {
if (this.f(input)) {
this.found = true;
result = _reduced(this.xf['@@transducer/step'](result, input));
}
return result;
};
return _curry2(function _xfind(f, xf) {
return new XFind(f, xf);
});
}();
var _xfindIndex = function () {
function XFindIndex(f, xf) {
this.xf = xf;
this.f = f;
this.idx = -1;
this.found = false;
}
XFindIndex.prototype['@@transducer/init'] = _xfBase.init;
XFindIndex.prototype['@@transducer/result'] = function (result) {
if (!this.found) {
result = this.xf['@@transducer/step'](result, -1);
}
return this.xf['@@transducer/result'](result);
};
XFindIndex.prototype['@@transducer/step'] = function (result, input) {
this.idx += 1;
if (this.f(input)) {
this.found = true;
result = _reduced(this.xf['@@transducer/step'](result, this.idx));
}
return result;
};
return _curry2(function _xfindIndex(f, xf) {
return new XFindIndex(f, xf);
});
}();
var _xfindLast = function () {
function XFindLast(f, xf) {
this.xf = xf;
this.f = f;
}
XFindLast.prototype['@@transducer/init'] = _xfBase.init;
XFindLast.prototype['@@transducer/result'] = function (result) {
return this.xf['@@transducer/result'](this.xf['@@transducer/step'](result, this.last));
};
XFindLast.prototype['@@transducer/step'] = function (result, input) {
if (this.f(input)) {
this.last = input;
}
return result;
};
return _curry2(function _xfindLast(f, xf) {
return new XFindLast(f, xf);
});
}();
var _xfindLastIndex = function () {
function XFindLastIndex(f, xf) {
this.xf = xf;
this.f = f;
this.idx = -1;
this.lastIdx = -1;
}
XFindLastIndex.prototype['@@transducer/init'] = _xfBase.init;
XFindLastIndex.prototype['@@transducer/result'] = function (result) {
return this.xf['@@transducer/result'](this.xf['@@transducer/step'](result, this.lastIdx));
};
XFindLastIndex.prototype['@@transducer/step'] = function (result, input) {
this.idx += 1;
if (this.f(input)) {
this.lastIdx = this.idx;
}
return result;
};
return _curry2(function _xfindLastIndex(f, xf) {
return new XFindLastIndex(f, xf);
});
}();
var _xmap = function () {
function XMap(f, xf) {
this.xf = xf;
this.f = f;
}
XMap.prototype['@@transducer/init'] = _xfBase.init;
XMap.prototype['@@transducer/result'] = _xfBase.result;
XMap.prototype['@@transducer/step'] = function (result, input) {
return this.xf['@@transducer/step'](result, this.f(input));
};
return _curry2(function _xmap(f, xf) {
return new XMap(f, xf);
});
}();
var _xtake = function () {
function XTake(n, xf) {
this.xf = xf;
this.n = n;
}
XTake.prototype['@@transducer/init'] = _xfBase.init;
XTake.prototype['@@transducer/result'] = _xfBase.result;
XTake.prototype['@@transducer/step'] = function (result, input) {
this.n -= 1;
return this.n === 0 ? _reduced(this.xf['@@transducer/step'](result, input)) : this.xf['@@transducer/step'](result, input);
};
return _curry2(function _xtake(n, xf) {
return new XTake(n, xf);
});
}();
var _xtakeWhile = function () {
function XTakeWhile(f, xf) {
this.xf = xf;
this.f = f;
}
XTakeWhile.prototype['@@transducer/init'] = _xfBase.init;
XTakeWhile.prototype['@@transducer/result'] = _xfBase.result;
XTakeWhile.prototype['@@transducer/step'] = function (result, input) {
return this.f(input) ? this.xf['@@transducer/step'](result, input) : _reduced(result);
};
return _curry2(function _xtakeWhile(f, xf) {
return new XTakeWhile(f, xf);
});
}();
var _xwrap = function () {
function XWrap(fn) {
this.f = fn;
}
XWrap.prototype['@@transducer/init'] = function () {
throw new Error('init not implemented on XWrap');
};
XWrap.prototype['@@transducer/result'] = function (acc) {
return acc;
};
XWrap.prototype['@@transducer/step'] = function (acc, x) {
return this.f(acc, x);
};
return function _xwrap(fn) {
return new XWrap(fn);
};
}();
/**
* Adds two numbers (or strings). Equivalent to `a + b` but curried.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Number
* @sig String -> String -> String
* @param {Number|String} a The first value.
* @param {Number|String} b The second value.
* @return {Number|String} The result of `a + b`.
* @example
*
* R.add(2, 3); //=> 5
* R.add(7)(10); //=> 17
*/
var add = _curry2(_add);
/**
* Applies a function to the value at the given index of an array,
* returning a new copy of the array with the element at the given
* index replaced with the result of the function application.
* @see R.update
*
* @func
* @memberOf R
* @category List
* @sig (a -> a) -> Number -> [a] -> [a]
* @param {Function} fn The function to apply.
* @param {Number} idx The index.
* @param {Array|Arguments} list An array-like object whose value
* at the supplied index will be replaced.
* @return {Array} A copy of the supplied array-like object with
* the element at index `idx` replaced with the value
* returned by applying `fn` to the existing element.
* @example
*
* R.adjust(R.add(10), 1, [0, 1, 2]); //=> [0, 11, 2]
* R.adjust(R.add(10))(1)([0, 1, 2]); //=> [0, 11, 2]
*/
var adjust = _curry3(function (fn, idx, list) {
if (idx >= list.length || idx < -list.length) {
return list;
}
var start = idx < 0 ? list.length : 0;
var _idx = start + idx;
var _list = _concat(list);
_list[_idx] = fn(list[_idx]);
return _list;
});
/**
* Returns a function that always returns the given value. Note that for non-primitives the value
* returned is a reference to the original value.
*
* @func
* @memberOf R
* @category Function
* @sig a -> (* -> a)
* @param {*} val The value to wrap in a function
* @return {Function} A Function :: * -> val.
* @example
*
* var t = R.always('Tee');
* t(); //=> 'Tee'
*/
var always = _curry1(function always(val) {
return function () {
return val;
};
});
/**
* Returns a new list, composed of n-tuples of consecutive elements
* If `n` is greater than the length of the list, an empty list is returned.
*
* @func
* @memberOf R
* @category List
* @sig Number -> [a] -> [[a]]
* @param {Number} n The size of the tuples to create
* @param {Array} list The list to split into `n`-tuples
* @return {Array} The new list.
* @example
*
* R.aperture(2, [1, 2, 3, 4, 5]); //=> [[1, 2], [2, 3], [3, 4], [4, 5]]
* R.aperture(3, [1, 2, 3, 4, 5]); //=> [[1, 2, 3], [2, 3, 4], [3, 4, 5]]
* R.aperture(7, [1, 2, 3, 4, 5]); //=> []
*/
var aperture = _curry2(function aperture(n, list) {
var idx = 0;
var limit = list.length - (n - 1);
var acc = new Array(limit >= 0 ? limit : 0);
while (idx < limit) {
acc[idx] = _slice(list, idx, idx + n);
idx += 1;
}
return acc;
});
/**
* Applies function `fn` to the argument list `args`. This is useful for
* creating a fixed-arity function from a variadic function. `fn` should
* be a bound function if context is significant.
*
* @func
* @memberOf R
* @category Function
* @sig (*... -> a) -> [*] -> a
* @param {Function} fn
* @param {Array} args
* @return {*}
* @example
*
* var nums = [1, 2, 3, -99, 42, 6, 7];
* R.apply(Math.max, nums); //=> 42
*/
var apply = _curry2(function apply(fn, args) {
return fn.apply(this, args);
});
/**
* Wraps a function of any arity (including nullary) in a function that accepts exactly `n`
* parameters. Unlike `nAry`, which passes only `n` arguments to the wrapped function,
* functions produced by `arity` will pass all provided arguments to the wrapped function.
*
* @func
* @memberOf R
* @sig (Number, (* -> *)) -> (* -> *)
* @category Function
* @param {Number} n The desired arity of the returned function.
* @param {Function} fn The function to wrap.
* @return {Function} A new function wrapping `fn`. The new function is
* guaranteed to be of arity `n`.
* @deprecated since v0.15.0
* @example
*
* var takesTwoArgs = function(a, b) {
* return [a, b];
* };
* takesTwoArgs.length; //=> 2
* takesTwoArgs(1, 2); //=> [1, 2]
*
* var takesOneArg = R.arity(1, takesTwoArgs);
* takesOneArg.length; //=> 1
* // All arguments are passed through to the wrapped function
* takesOneArg(1, 2); //=> [1, 2]
*/
// jshint unused:vars
var arity = _curry2(function (n, fn) {
// jshint unused:vars
switch (n) {
case 0:
return function () {
return fn.apply(this, arguments);
};
case 1:
return function (a0) {
return fn.apply(this, arguments);
};
case 2:
return function (a0, a1) {
return fn.apply(this, arguments);
};
case 3:
return function (a0, a1, a2) {
return fn.apply(this, arguments);
};
case 4:
return function (a0, a1, a2, a3) {
return fn.apply(this, arguments);
};
case 5:
return function (a0, a1, a2, a3, a4) {
return fn.apply(this, arguments);
};
case 6:
return function (a0, a1, a2, a3, a4, a5) {
return fn.apply(this, arguments);
};
case 7:
return function (a0, a1, a2, a3, a4, a5, a6) {
return fn.apply(this, arguments);
};
case 8:
return function (a0, a1, a2, a3, a4, a5, a6, a7) {
return fn.apply(this, arguments);
};
case 9:
return function (a0, a1, a2, a3, a4, a5, a6, a7, a8) {
return fn.apply(this, arguments);
};
case 10:
return function (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) {
return fn.apply(this, arguments);
};
default:
throw new Error('First argument to arity must be a non-negative integer no greater than ten');
}
});
/**
* Makes a shallow clone of an object, setting or overriding the specified
* property with the given value. Note that this copies and flattens
* prototype properties onto the new object as well. All non-primitive
* properties are copied by reference.
*
* @func
* @memberOf R
* @category Object
* @sig String -> a -> {k: v} -> {k: v}
* @param {String} prop the property name to set
* @param {*} val the new value
* @param {Object} obj the object to clone
* @return {Object} a new object similar to the original except for the specified property.
* @example
*
* R.assoc('c', 3, {a: 1, b: 2}); //=> {a: 1, b: 2, c: 3}
*/
var assoc = _curry3(_assoc);
/**
* Creates a function that is bound to a context.
* Note: `R.bind` does not provide the additional argument-binding capabilities of
* [Function.prototype.bind](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind).
*
* @func
* @memberOf R
* @category Function
* @category Object
* @see R.partial
* @sig (* -> *) -> {*} -> (* -> *)
* @param {Function} fn The function to bind to context
* @param {Object} thisObj The context to bind `fn` to
* @return {Function} A function that will execute in the context of `thisObj`.
*/
var bind = _curry2(function bind(fn, thisObj) {
return arity(fn.length, function () {
return fn.apply(thisObj, arguments);
});
});
/**
* A function wrapping calls to the two functions in an `&&` operation, returning the result of the first
* function if it is false-y and the result of the second function otherwise. Note that this is
* short-circuited, meaning that the second function will not be invoked if the first returns a false-y
* value.
*
* @func
* @memberOf R
* @category Logic
* @sig (*... -> Boolean) -> (*... -> Boolean) -> (*... -> Boolean)
* @param {Function} f a predicate
* @param {Function} g another predicate
* @return {Function} a function that applies its arguments to `f` and `g` and `&&`s their outputs together.
* @example
*
* var gt10 = function(x) { return x > 10; };
* var even = function(x) { return x % 2 === 0 };
* var f = R.both(gt10, even);
* f(100); //=> true
* f(101); //=> false
*/
var both = _curry2(function both(f, g) {
return function _both() {
return f.apply(this, arguments) && g.apply(this, arguments);
};
});
/**
* Makes a comparator function out of a function that reports whether the first element is less than the second.
*
* @func
* @memberOf R
* @category Function
* @sig (a, b -> Boolean) -> (a, b -> Number)
* @param {Function} pred A predicate function of arity two.
* @return {Function} A Function :: a -> b -> Int that returns `-1` if a < b, `1` if b < a, otherwise `0`.
* @example
*
* var cmp = R.comparator(function(a, b) {
* return a.age < b.age;
* });
* var people = [
* // ...
* ];
* R.sort(cmp, people);
*/
var comparator = _curry1(function comparator(pred) {
return function (a, b) {
return pred(a, b) ? -1 : pred(b, a) ? 1 : 0;
};
});
/**
* Takes a function `f` and returns a function `g` such that:
*
* - applying `g` to zero or more arguments will give __true__ if applying
* the same arguments to `f` gives a logical __false__ value; and
*
* - applying `g` to zero or more arguments will give __false__ if applying
* the same arguments to `f` gives a logical __true__ value.
*
* @func
* @memberOf R
* @category Logic
* @sig (*... -> *) -> (*... -> Boolean)
* @param {Function} f
* @return {Function}
* @example
*
* var isEven = function(n) { return n % 2 === 0; };
* var isOdd = R.complement(isEven);
* isOdd(21); //=> true
* isOdd(42); //=> false
*/
var complement = _curry1(_complement);
/**
* Returns a function, `fn`, which encapsulates if/else-if/else logic.
* Each argument to `R.cond` is a [predicate, transform] pair. All of
* the arguments to `fn` are applied to each of the predicates in turn
* until one returns a "truthy" value, at which point `fn` returns the
* result of applying its arguments to the corresponding transformer.
* If none of the predicates matches, `fn` returns undefined.
*
* @func
* @memberOf R
* @category Logic
* @sig [(*... -> Boolean),(*... -> *)]... -> (*... -> *)
* @param {...Function} functions
* @return {Function}
* @example
*
* var fn = R.cond(
* [R.equals(0), R.always('water freezes at 0°C')],
* [R.equals(100), R.always('water boils at 100°C')],
* [R.T, function(temp) { return 'nothing special happens at ' + temp + '°C'; }]
* );
* fn(0); //=> 'water freezes at 0°C'
* fn(50); //=> 'nothing special happens at 50°C'
* fn(100); //=> 'water boils at 100°C'
*/
var cond = function cond() {
var pairs = arguments;
return function () {
var idx = 0;
while (idx < pairs.length) {
if (pairs[idx][0].apply(this, arguments)) {
return pairs[idx][1].apply(this, arguments);
}
idx += 1;
}
};
};
/**
* Returns `true` if the `x` is found in the `list`, using `pred` as an
* equality predicate for `x`.
*
* @func
* @memberOf R
* @category List
* @sig (a, a -> Boolean) -> a -> [a] -> Boolean
* @param {Function} pred A predicate used to test whether two items are equal.
* @param {*} x The item to find
* @param {Array} list The list to iterate over
* @return {Boolean} `true` if `x` is in `list`, else `false`.
* @example
*
* var xs = [{x: 12}, {x: 11}, {x: 10}];
* R.containsWith(function(a, b) { return a.x === b.x; }, {x: 10}, xs); //=> true
* R.containsWith(function(a, b) { return a.x === b.x; }, {x: 1}, xs); //=> false
*/
var containsWith = _curry3(_containsWith);
/**
* Counts the elements of a list according to how many match each value
* of a key generated by the supplied function. Returns an object
* mapping the keys produced by `fn` to the number of occurrences in
* the list. Note that all keys are coerced to strings because of how
* JavaScript objects work.
*
* @func
* @memberOf R
* @category Relation
* @sig (a -> String) -> [a] -> {*}
* @param {Function} fn The function used to map values to keys.
* @param {Array} list The list to count elements from.
* @return {Object} An object mapping keys to number of occurrences in the list.
* @example
*
* var numbers = [1.0, 1.1, 1.2, 2.0, 3.0, 2.2];
* var letters = R.split('', 'abcABCaaaBBc');
* R.countBy(Math.floor)(numbers); //=> {'1': 3, '2': 2, '3': 1}
* R.countBy(R.toLower)(letters); //=> {'a': 5, 'b': 4, 'c': 3}
*/
var countBy = _curry2(function countBy(fn, list) {
var counts = {};
var len = list.length;
var idx = 0;
while (idx < len) {
var key = fn(list[idx]);
counts[key] = (_has(key, counts) ? counts[key] : 0) + 1;
idx += 1;
}
return counts;
});
/**
* Creates an object containing a single key:value pair.
*
* @func
* @memberOf R
* @category Object
* @sig String -> a -> {String:a}
* @param {String} key
* @param {*} val
* @return {Object}
* @example
*
* var matchPhrases = R.compose(
* R.createMapEntry('must'),
* R.map(R.createMapEntry('match_phrase'))
* );
* matchPhrases(['foo', 'bar', 'baz']); //=> {must: [{match_phrase: 'foo'}, {match_phrase: 'bar'}, {match_phrase: 'baz'}]}
*/
var createMapEntry = _curry2(_createMapEntry);
/**
* Decrements its argument.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number
* @param {Number} n
* @return {Number}
* @example
*
* R.dec(42); //=> 41
*/
var dec = add(-1);
/**
* Returns the second argument if it is not null or undefined. If it is null
* or undefined, the first (default) argument is returned.
*
* @func
* @memberOf R
* @category Logic
* @sig a -> b -> a | b
* @param {a} val The default value.
* @param {b} val The value to return if it is not null or undefined
* @return {*} The the second value or the default value
* @example
*
* var defaultTo42 = defaultTo(42);
*
* defaultTo42(null); //=> 42
* defaultTo42(undefined); //=> 42
* defaultTo42('Ramda'); //=> 'Ramda'
*/
var defaultTo = _curry2(function defaultTo(d, v) {
return v == null ? d : v;
});
/**
* Finds the set (i.e. no duplicates) of all elements in the first list not contained in the second list.
* Duplication is determined according to the value returned by applying the supplied predicate to two list
* elements.
*
* @func
* @memberOf R
* @category Relation
* @sig (a,a -> Boolean) -> [a] -> [a] -> [a]
* @param {Function} pred A predicate used to test whether two items are equal.
* @param {Array} list1 The first list.
* @param {Array} list2 The second list.
* @see R.difference
* @return {Array} The elements in `list1` that are not in `list2`.
* @example
*
* function cmp(x, y) { return x.a === y.a; }
* var l1 = [{a: 1}, {a: 2}, {a: 3}];
* var l2 = [{a: 3}, {a: 4}];
* R.differenceWith(cmp, l1, l2); //=> [{a: 1}, {a: 2}]
*/
var differenceWith = _curry3(function differenceWith(pred, first, second) {
var out = [];
var idx = 0;
var firstLen = first.length;
var containsPred = containsWith(pred);
while (idx < firstLen) {
if (!containsPred(first[idx], second) && !containsPred(first[idx], out)) {
out[out.length] = first[idx];
}
idx += 1;
}
return out;
});
/**
* Returns a new object that does not contain a `prop` property.
*
* @func
* @memberOf R
* @category Object
* @sig String -> {k: v} -> {k: v}
* @param {String} prop the name of the property to dissociate
* @param {Object} obj the object to clone
* @return {Object} a new object similar to the original but without the specified property
* @example
*
* R.dissoc('b', {a: 1, b: 2, c: 3}); //=> {a: 1, c: 3}
*/
var dissoc = _curry2(_dissoc);
/**
* Divides two numbers. Equivalent to `a / b`.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Number
* @param {Number} a The first value.
* @param {Number} b The second value.
* @return {Number} The result of `a / b`.
* @example
*
* R.divide(71, 100); //=> 0.71
*
* var half = R.divide(R.__, 2);
* half(42); //=> 21
*
* var reciprocal = R.divide(1);
* reciprocal(4); //=> 0.25
*/
var divide = _curry2(function divide(a, b) {
return a / b;
});
/**
* A function wrapping calls to the two functions in an `||` operation, returning the result of the first
* function if it is truth-y and the result of the second function otherwise. Note that this is
* short-circuited, meaning that the second function will not be invoked if the first returns a truth-y
* value.
*
* @func
* @memberOf R
* @category Logic
* @sig (*... -> Boolean) -> (*... -> Boolean) -> (*... -> Boolean)
* @param {Function} f a predicate
* @param {Function} g another predicate
* @return {Function} a function that applies its arguments to `f` and `g` and `||`s their outputs together.
* @example
*
* var gt10 = function(x) { return x > 10; };
* var even = function(x) { return x % 2 === 0 };
* var f = R.either(gt10, even);
* f(101); //=> true
* f(8); //=> true
*/
var either = _curry2(function either(f, g) {
return function _either() {
return f.apply(this, arguments) || g.apply(this, arguments);
};
});
/**
* Tests if two items are equal. Equality is strict here, meaning reference equality for objects and
* non-coercing equality for primitives.
*
* Has `Object.is` semantics: `NaN` is considered equal to `NaN`; `0` and `-0`
* are not considered equal.
* @see R.identical
*
* @func
* @memberOf R
* @category Relation
* @sig a -> a -> Boolean
* @param {*} a
* @param {*} b
* @return {Boolean}
* @deprecated since v0.15.0
* @example
*
* var o = {};
* R.eq(o, o); //=> true
* R.eq(o, {}); //=> false
* R.eq(1, 1); //=> true
* R.eq(1, '1'); //=> false
* R.eq(0, -0); //=> false
* R.eq(NaN, NaN); //=> true
*/
var eq = _curry2(_eq);
/**
* Creates a new object by recursively evolving a shallow copy of `object`, according to the
* `transformation` functions. All non-primitive properties are copied by reference.
*
* A `tranformation` function will not be invoked if its corresponding key does not exist in
* the evolved object.
*
* @func
* @memberOf R
* @category Object
* @sig {k: (v -> v)} -> {k: v} -> {k: v}
* @param {Object} transformations The object specifying transformation functions to apply
* to the object.
* @param {Object} object The object to be transformed.
* @return {Object} The transformed object.
* @example
*
* var tomato = {firstName: ' Tomato ', elapsed: 100, remaining: 1400};
* var transformations = {
* firstName: R.trim,
* lastName: R.trim, // Will not get invoked.
* data: {elapsed: R.add(1), remaining: R.add(-1)}
* };
* R.evolve(transformations, tomato); //=> {firstName: 'Tomato', data: {elapsed: 101, remaining: 1399}}
*/
var evolve = _curry2(function evolve(transformations, object) {
var transformation, key, type, result = {};
for (key in object) {
transformation = transformations[key];
type = typeof transformation;
result[key] = type === 'function' ? transformation(object[key]) : type === 'object' ? evolve(transformations[key], object[key]) : object[key];
}
return result;
});
/**
* Like `filter`, but passes additional parameters to the predicate function. The predicate
* function is passed three arguments: *(value, index, list)*.
*
* @func
* @memberOf R
* @category List
* @sig (a, i, [a] -> Boolean) -> [a] -> [a]
* @param {Function} fn The function called per iteration.
* @param {Array} list The collection to iterate over.
* @return {Array} The new filtered array.
* @deprecated since v0.15.0
* @see R.addIndex
* @example
*
* var lastTwo = function(val, idx, list) {
* return list.length - idx <= 2;
* };
* R.filterIndexed(lastTwo, [8, 6, 7, 5, 3, 0, 9]); //=> [0, 9]
*/
var filterIndexed = _curry2(_filterIndexed);
/**
* Like `forEach`, but but passes additional parameters to the predicate function.
*
* `fn` receives three arguments: *(value, index, list)*.
*
* Note: `R.forEachIndexed` does not skip deleted or unassigned indices (sparse arrays),
* unlike the native `Array.prototype.forEach` method. For more details on this behavior,
* see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach#Description
*
* Also note that, unlike `Array.prototype.forEach`, Ramda's `forEach` returns the original
* array. In some libraries this function is named `each`.
*
* @func
* @memberOf R
* @category List
* @sig (a, i, [a] -> ) -> [a] -> [a]
* @param {Function} fn The function to invoke. Receives three arguments:
* (`value`, `index`, `list`).
* @param {Array} list The list to iterate over.
* @return {Array} The original list.
* @deprecated since v0.15.0
* @see R.addIndex
* @example
*
* // Note that having access to the original `list` allows for
* // mutation. While you *can* do this, it's very un-functional behavior:
* var plusFive = function(num, idx, list) { list[idx] = num + 5 };
* R.forEachIndexed(plusFive, [1, 2, 3]); //=> [6, 7, 8]
*/
// i can't bear not to return *something*
var forEachIndexed = _curry2(function forEachIndexed(fn, list) {
var idx = 0, len = list.length;
while (idx < len) {
fn(list[idx], idx, list);
idx += 1;
}
// i can't bear not to return *something*
return list;
});
/**
* Creates a new object out of a list key-value pairs.
*
* @func
* @memberOf R
* @category List
* @sig [[k,v]] -> {k: v}
* @param {Array} pairs An array of two-element arrays that will be the keys and values of the output object.
* @return {Object} The object made by pairing up `keys` and `values`.
* @example
*
* R.fromPairs([['a', 1], ['b', 2], ['c', 3]]); //=> {a: 1, b: 2, c: 3}
*/
var fromPairs = _curry1(function fromPairs(pairs) {
var idx = 0, len = pairs.length, out = {};
while (idx < len) {
if (_isArray(pairs[idx]) && pairs[idx].length) {
out[pairs[idx][0]] = pairs[idx][1];
}
idx += 1;
}
return out;
});
/**
* Returns true if the first parameter is greater than the second.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Boolean
* @param {Number} a
* @param {Number} b
* @return {Boolean} a > b
* @example
*
* R.gt(2, 6); //=> false
* R.gt(2, 0); //=> true
* R.gt(2, 2); //=> false
* R.gt(R.__, 2)(10); //=> true
* R.gt(2)(10); //=> false
*/
var gt = _curry2(_gt);
/**
* Returns true if the first parameter is greater than or equal to the second.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Boolean
* @param {Number} a
* @param {Number} b
* @return {Boolean} a >= b
* @example
*
* R.gte(2, 6); //=> false
* R.gte(2, 0); //=> true
* R.gte(2, 2); //=> true
* R.gte(R.__, 6)(2); //=> false
* R.gte(2)(0); //=> true
*/
var gte = _curry2(function gte(a, b) {
return a >= b;
});
/**
* Returns whether or not an object has an own property with
* the specified name
*
* @func
* @memberOf R
* @category Object
* @sig s -> {s: x} -> Boolean
* @param {String} prop The name of the property to check for.
* @param {Object} obj The object to query.
* @return {Boolean} Whether the property exists.
* @example
*
* var hasName = R.has('name');
* hasName({name: 'alice'}); //=> true
* hasName({name: 'bob'}); //=> true
* hasName({}); //=> false
*
* var point = {x: 0, y: 0};
* var pointHas = R.has(R.__, point);
* pointHas('x'); //=> true
* pointHas('y'); //=> true
* pointHas('z'); //=> false
*/
var has = _curry2(_has);
/**
* Returns whether or not an object or its prototype chain has
* a property with the specified name
*
* @func
* @memberOf R
* @category Object
* @sig s -> {s: x} -> Boolean
* @param {String} prop The name of the property to check for.
* @param {Object} obj The object to query.
* @return {Boolean} Whether the property exists.
* @example
*
* function Rectangle(width, height) {
* this.width = width;
* this.height = height;
* }
* Rectangle.prototype.area = function() {
* return this.width * this.height;
* };
*
* var square = new Rectangle(2, 2);
* R.hasIn('width', square); //=> true
* R.hasIn('area', square); //=> true
*/
var hasIn = _curry2(function (prop, obj) {
return prop in obj;
});
/**
* Returns true if its arguments are identical, false otherwise. Values are
* identical if they reference the same memory. `NaN` is identical to `NaN`;
* `0` and `-0` are not identical.
*
* @func
* @memberOf R
* @category Relation
* @sig a -> a -> Boolean
* @param {*} a
* @param {*} b
* @return {Boolean}
* @example
*
* var o = {};
* R.identical(o, o); //=> true
* R.identical(1, 1); //=> true
* R.identical(1, '1'); //=> false
* R.identical([], []); //=> false
* R.identical(0, -0); //=> false
* R.identical(NaN, NaN); //=> true
*/
// SameValue algorithm
// Steps 1-5, 7-10
// Steps 6.b-6.e: +0 != -0
// Step 6.a: NaN == NaN
var identical = _curry2(function identical(a, b) {
// SameValue algorithm
if (a === b) {
// Steps 1-5, 7-10
// Steps 6.b-6.e: +0 != -0
return a !== 0 || 1 / a === 1 / b;
} else {
// Step 6.a: NaN == NaN
return a !== a && b !== b;
}
});
/**
* A function that does nothing but return the parameter supplied to it. Good as a default
* or placeholder function.
*
* @func
* @memberOf R
* @category Function
* @sig a -> a
* @param {*} x The value to return.
* @return {*} The input value, `x`.
* @example
*
* R.identity(1); //=> 1
*
* var obj = {};
* R.identity(obj) === obj; //=> true
*/
var identity = _curry1(_identity);
/**
* Increments its argument.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number
* @param {Number} n
* @return {Number}
* @example
*
* R.inc(42); //=> 43
*/
var inc = add(1);
/**
* Inserts the sub-list into the list, at index `index`. _Note that this
* is not destructive_: it returns a copy of the list with the changes.
* <small>No lists have been harmed in the application of this function.</small>
*
* @func
* @memberOf R
* @category List
* @sig Number -> [a] -> [a] -> [a]
* @param {Number} index The position to insert the sub-list
* @param {Array} elts The sub-list to insert into the Array
* @param {Array} list The list to insert the sub-list into
* @return {Array} A new Array with `elts` inserted starting at `index`.
* @example
*
* R.insertAll(2, ['x','y','z'], [1,2,3,4]); //=> [1,2,'x','y','z',3,4]
*/
var insertAll = _curry3(function insertAll(idx, elts, list) {
idx = idx < list.length && idx >= 0 ? idx : list.length;
return _concat(_concat(_slice(list, 0, idx), elts), _slice(list, idx));
});
/**
* See if an object (`val`) is an instance of the supplied constructor.
* This function will check up the inheritance chain, if any.
*
* @func
* @memberOf R
* @category Type
* @sig (* -> {*}) -> a -> Boolean
* @param {Object} ctor A constructor
* @param {*} val The value to test
* @return {Boolean}
* @example
*
* R.is(Object, {}); //=> true
* R.is(Number, 1); //=> true
* R.is(Object, 1); //=> false
* R.is(String, 's'); //=> true
* R.is(String, new String('')); //=> true
* R.is(Object, new String('')); //=> true
* R.is(Object, 's'); //=> false
* R.is(Number, {}); //=> false
*/
var is = _curry2(function is(Ctor, val) {
return val != null && val.constructor === Ctor || val instanceof Ctor;
});
/**
* Tests whether or not an object is similar to an array.
*
* @func
* @memberOf R
* @category Type
* @category List
* @sig * -> Boolean
* @param {*} x The object to test.
* @return {Boolean} `true` if `x` has a numeric length property and extreme indices defined; `false` otherwise.
* @example
*
* R.isArrayLike([]); //=> true
* R.isArrayLike(true); //=> false
* R.isArrayLike({}); //=> false
* R.isArrayLike({length: 10}); //=> false
* R.isArrayLike({0: 'zero', 9: 'nine', length: 10}); //=> true
*/
var isArrayLike = _curry1(function isArrayLike(x) {
if (_isArray(x)) {
return true;
}
if (!x) {
return false;
}
if (typeof x !== 'object') {
return false;
}
if (x instanceof String) {
return false;
}
if (x.nodeType === 1) {
return !!x.length;
}
if (x.length === 0) {
return true;
}
if (x.length > 0) {
return x.hasOwnProperty(0) && x.hasOwnProperty(x.length - 1);
}
return false;
});
/**
* Reports whether the list has zero elements.
*
* @func
* @memberOf R
* @category Logic
* @sig [a] -> Boolean
* @param {Array} list
* @return {Boolean}
* @example
*
* R.isEmpty([1, 2, 3]); //=> false
* R.isEmpty([]); //=> true
* R.isEmpty(''); //=> true
* R.isEmpty(null); //=> false
* R.isEmpty(R.keys({})); //=> true
* R.isEmpty({}); //=> false ({} does not have a length property)
* R.isEmpty({length: 0}); //=> true
*/
var isEmpty = _curry1(function isEmpty(list) {
return Object(list).length === 0;
});
/**
* Checks if the input value is `null` or `undefined`.
*
* @func
* @memberOf R
* @category Type
* @sig * -> Boolean
* @param {*} x The value to test.
* @return {Boolean} `true` if `x` is `undefined` or `null`, otherwise `false`.
* @example
*
* R.isNil(null); //=> true
* R.isNil(undefined); //=> true
* R.isNil(0); //=> false
* R.isNil([]); //=> false
*/
var isNil = _curry1(function isNil(x) {
return x == null;
});
/**
* Returns a list containing the names of all the enumerable own
* properties of the supplied object.
* Note that the order of the output array is not guaranteed to be
* consistent across different JS platforms.
*
* @func
* @memberOf R
* @category Object
* @sig {k: v} -> [k]
* @param {Object} obj The object to extract properties from
* @return {Array} An array of the object's own properties.
* @example
*
* R.keys({a: 1, b: 2, c: 3}); //=> ['a', 'b', 'c']
*/
// cover IE < 9 keys issues
var keys = function () {
// cover IE < 9 keys issues
var hasEnumBug = !{ toString: null }.propertyIsEnumerable('toString');
var nonEnumerableProps = [
'constructor',
'valueOf',
'isPrototypeOf',
'toString',
'propertyIsEnumerable',
'hasOwnProperty',
'toLocaleString'
];
var contains = function contains(list, item) {
var idx = 0;
while (idx < list.length) {
if (list[idx] === item) {
return true;
}
idx += 1;
}
return false;
};
return typeof Object.keys === 'function' ? _curry1(function keys(obj) {
return Object(obj) !== obj ? [] : Object.keys(obj);
}) : _curry1(function keys(obj) {
if (Object(obj) !== obj) {
return [];
}
var prop, ks = [], nIdx;
for (prop in obj) {
if (_has(prop, obj)) {
ks[ks.length] = prop;
}
}
if (hasEnumBug) {
nIdx = nonEnumerableProps.length - 1;
while (nIdx >= 0) {
prop = nonEnumerableProps[nIdx];
if (_has(prop, obj) && !contains(ks, prop)) {
ks[ks.length] = prop;
}
nIdx -= 1;
}
}
return ks;
});
}();
/**
* Returns a list containing the names of all the
* properties of the supplied object, including prototype properties.
* Note that the order of the output array is not guaranteed to be
* consistent across different JS platforms.
*
* @func
* @memberOf R
* @category Object
* @sig {k: v} -> [k]
* @param {Object} obj The object to extract properties from
* @return {Array} An array of the object's own and prototype properties.
* @example
*
* var F = function() { this.x = 'X'; };
* F.prototype.y = 'Y';
* var f = new F();
* R.keysIn(f); //=> ['x', 'y']
*/
var keysIn = _curry1(function keysIn(obj) {
var prop, ks = [];
for (prop in obj) {
ks[ks.length] = prop;
}
return ks;
});
/**
* Returns the number of elements in the array by returning `list.length`.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> Number
* @param {Array} list The array to inspect.
* @return {Number} The length of the array.
* @example
*
* R.length([]); //=> 0
* R.length([1, 2, 3]); //=> 3
*/
var length = _curry1(function length(list) {
return list != null && is(Number, list.length) ? list.length : NaN;
});
/**
* Creates a lens. Supply a function to `get` values from inside an object, and a `set`
* function to change values on an object. (n.b.: This can, and should, be done without
* mutating the original object!) The lens is a function wrapped around the input `get`
* function, with the `set` function attached as a property on the wrapper. A `map`
* function is also attached to the returned function that takes a function to operate
* on the specified (`get`) property, which is then `set` before returning. The attached
* `set` and `map` functions are curried.
*
* @func
* @memberOf R
* @category Object
* @sig (k -> v) -> (v -> a -> *) -> (a -> b)
* @param {Function} get A function that gets a value by property name
* @param {Function} set A function that sets a value by property name
* @return {Function} the returned function has `set` and `map` properties that are
* also curried functions.
* @example
*
* var headLens = R.lens(
* function get(arr) { return arr[0]; },
* function set(val, arr) { return [val].concat(arr.slice(1)); }
* );
* headLens([10, 20, 30, 40]); //=> 10
* headLens.set('mu', [10, 20, 30, 40]); //=> ['mu', 20, 30, 40]
* headLens.map(function(x) { return x + 1; }, [10, 20, 30, 40]); //=> [11, 20, 30, 40]
*
* var phraseLens = R.lens(
* function get(obj) { return obj.phrase; },
* function set(val, obj) {
* var out = R.clone(obj);
* out.phrase = val;
* return out;
* }
* );
* var obj1 = { phrase: 'Absolute filth . . . and I LOVED it!'};
* var obj2 = { phrase: "What's all this, then?"};
* phraseLens(obj1); // => 'Absolute filth . . . and I LOVED it!'
* phraseLens(obj2); // => "What's all this, then?"
* phraseLens.set('Ooh Betty', obj1); //=> { phrase: 'Ooh Betty'}
* phraseLens.map(R.toUpper, obj2); //=> { phrase: "WHAT'S ALL THIS, THEN?"}
*/
var lens = _curry2(function lens(get, set) {
var lns = function (a) {
return get(a);
};
lns.set = _curry2(set);
lns.map = _curry2(function (fn, a) {
return set(fn(get(a)), a);
});
return lns;
});
/**
* Returns a lens associated with the provided object.
*
* @func
* @memberOf R
* @category Object
* @sig ({} -> v) -> (v -> a -> *) -> {} -> (a -> b)
* @see R.lens
* @param {Function} get A function that gets a value by property name
* @param {Function} set A function that sets a value by property name
* @param {Object} the actual object of interest
* @return {Function} the returned function has `set` and `map` properties that are
* also curried functions.
* @example
*
* var xo = {x: 1};
* var xoLens = R.lensOn(function get(o) { return o.x; },
* function set(v) { return {x: v}; },
* xo);
* xoLens(); //=> 1
* xoLens.set(1000); //=> {x: 1000}
* xoLens.map(R.add(1)); //=> {x: 2}
*/
var lensOn = _curry3(function lensOn(get, set, obj) {
var lns = function () {
return get(obj);
};
lns.set = set;
lns.map = function (fn) {
return set(fn(get(obj)));
};
return lns;
});
/**
* Returns true if the first parameter is less than the second.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Boolean
* @param {Number} a
* @param {Number} b
* @return {Boolean} a < b
* @example
*
* R.lt(2, 6); //=> true
* R.lt(2, 0); //=> false
* R.lt(2, 2); //=> false
* R.lt(5)(10); //=> true
* R.lt(R.__, 5)(10); //=> false // right-sectioned currying
*/
var lt = _curry2(_lt);
/**
* Returns true if the first parameter is less than or equal to the second.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Boolean
* @param {Number} a
* @param {Number} b
* @return {Boolean} a <= b
* @example
*
* R.lte(2, 6); //=> true
* R.lte(2, 0); //=> false
* R.lte(2, 2); //=> true
* R.lte(R.__, 2)(1); //=> true
* R.lte(2)(10); //=> true
*/
var lte = _curry2(function lte(a, b) {
return a <= b;
});
/**
* The mapAccum function behaves like a combination of map and reduce; it applies a
* function to each element of a list, passing an accumulating parameter from left to
* right, and returning a final value of this accumulator together with the new list.
*
* The iterator function receives two arguments, *acc* and *value*, and should return
* a tuple *[acc, value]*.
*
* @func
* @memberOf R
* @category List
* @sig (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
* @param {Function} fn The function to be called on every element of the input `list`.
* @param {*} acc The accumulator value.
* @param {Array} list The list to iterate over.
* @return {*} The final, accumulated value.
* @example
*
* var digits = ['1', '2', '3', '4'];
* var append = function(a, b) {
* return [a + b, a + b];
* }
*
* R.mapAccum(append, 0, digits); //=> ['01234', ['01', '012', '0123', '01234']]
*/
var mapAccum = _curry3(function mapAccum(fn, acc, list) {
var idx = 0, len = list.length, result = [], tuple = [acc];
while (idx < len) {
tuple = fn(tuple[0], list[idx]);
result[idx] = tuple[1];
idx += 1;
}
return [
tuple[0],
result
];
});
/**
* The mapAccumRight function behaves like a combination of map and reduce; it applies a
* function to each element of a list, passing an accumulating parameter from right
* to left, and returning a final value of this accumulator together with the new list.
*
* Similar to `mapAccum`, except moves through the input list from the right to the
* left.
*
* The iterator function receives two arguments, *acc* and *value*, and should return
* a tuple *[acc, value]*.
*
* @func
* @memberOf R
* @category List
* @sig (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
* @param {Function} fn The function to be called on every element of the input `list`.
* @param {*} acc The accumulator value.
* @param {Array} list The list to iterate over.
* @return {*} The final, accumulated value.
* @example
*
* var digits = ['1', '2', '3', '4'];
* var append = function(a, b) {
* return [a + b, a + b];
* }
*
* R.mapAccumRight(append, 0, digits); //=> ['04321', ['04321', '0432', '043', '04']]
*/
var mapAccumRight = _curry3(function mapAccumRight(fn, acc, list) {
var idx = list.length - 1, result = [], tuple = [acc];
while (idx >= 0) {
tuple = fn(tuple[0], list[idx]);
result[idx] = tuple[1];
idx -= 1;
}
return [
tuple[0],
result
];
});
/**
* Like `map`, but but passes additional parameters to the mapping function.
* `fn` receives three arguments: *(value, index, list)*.
*
* Note: `R.mapIndexed` does not skip deleted or unassigned indices (sparse arrays), unlike
* the native `Array.prototype.map` method. For more details on this behavior, see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map#Description
*
* @func
* @memberOf R
* @category List
* @sig (a,i,[b] -> b) -> [a] -> [b]
* @param {Function} fn The function to be called on every element of the input `list`.
* @param {Array} list The list to be iterated over.
* @return {Array} The new list.
* @deprecated since v0.15.0
* @see R.addIndex
* @example
*
* var squareEnds = function(elt, idx, list) {
* if (idx === 0 || idx === list.length - 1) {
* return elt * elt;
* }
* return elt;
* };
*
* R.mapIndexed(squareEnds, [8, 5, 3, 0, 9]); //=> [64, 5, 3, 0, 81]
*/
var mapIndexed = _curry2(function mapIndexed(fn, list) {
var idx = 0, len = list.length, result = [];
while (idx < len) {
result[idx] = fn(list[idx], idx, list);
idx += 1;
}
return result;
});
/**
* mathMod behaves like the modulo operator should mathematically, unlike the `%`
* operator (and by extension, R.modulo). So while "-17 % 5" is -2,
* mathMod(-17, 5) is 3. mathMod requires Integer arguments, and returns NaN
* when the modulus is zero or negative.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Number
* @param {Number} m The dividend.
* @param {Number} p the modulus.
* @return {Number} The result of `b mod a`.
* @see R.moduloBy
* @example
*
* R.mathMod(-17, 5); //=> 3
* R.mathMod(17, 5); //=> 2
* R.mathMod(17, -5); //=> NaN
* R.mathMod(17, 0); //=> NaN
* R.mathMod(17.2, 5); //=> NaN
* R.mathMod(17, 5.3); //=> NaN
*
* var clock = R.mathMod(R.__, 12);
* clock(15); //=> 3
* clock(24); //=> 0
*
* var seventeenMod = R.mathMod(17);
* seventeenMod(3); //=> 2
* seventeenMod(4); //=> 1
* seventeenMod(10); //=> 7
*/
var mathMod = _curry2(function mathMod(m, p) {
if (!_isInteger(m)) {
return NaN;
}
if (!_isInteger(p) || p < 1) {
return NaN;
}
return (m % p + p) % p;
});
/**
* Determines the largest of a list of items as determined by pairwise comparisons from the supplied comparator.
* Note that this will return undefined if supplied an empty list.
*
* @func
* @memberOf R
* @category Math
* @sig (a -> Number) -> [a] -> a
* @param {Function} keyFn A comparator function for elements in the list
* @param {Array} list A list of comparable elements
* @return {*} The greatest element in the list. `undefined` if the list is empty.
* @see R.max
* @example
*
* function cmp(obj) { return obj.x; }
* var a = {x: 1}, b = {x: 2}, c = {x: 3};
* R.maxBy(cmp, [a, b, c]); //=> {x: 3}
*/
var maxBy = _curry2(_createMaxMinBy(_gt));
/**
* Determines the smallest of a list of items as determined by pairwise comparisons from the supplied comparator
* Note that this will return undefined if supplied an empty list.
*
* @func
* @memberOf R
* @category Math
* @sig (a -> Number) -> [a] -> a
* @param {Function} keyFn A comparator function for elements in the list
* @param {Array} list A list of comparable elements
* @see R.min
* @return {*} The greatest element in the list. `undefined` if the list is empty.
* @example
*
* function cmp(obj) { return obj.x; }
* var a = {x: 1}, b = {x: 2}, c = {x: 3};
* R.minBy(cmp, [a, b, c]); //=> {x: 1}
*/
var minBy = _curry2(_createMaxMinBy(_lt));
/**
* Divides the second parameter by the first and returns the remainder.
* Note that this functions preserves the JavaScript-style behavior for
* modulo. For mathematical modulo see `mathMod`
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Number
* @param {Number} a The value to the divide.
* @param {Number} b The pseudo-modulus
* @return {Number} The result of `b % a`.
* @see R.mathMod
* @example
*
* R.modulo(17, 3); //=> 2
* // JS behavior:
* R.modulo(-17, 3); //=> -2
* R.modulo(17, -3); //=> 2
*
* var isOdd = R.modulo(R.__, 2);
* isOdd(42); //=> 0
* isOdd(21); //=> 1
*/
var modulo = _curry2(function modulo(a, b) {
return a % b;
});
/**
* Multiplies two numbers. Equivalent to `a * b` but curried.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Number
* @param {Number} a The first value.
* @param {Number} b The second value.
* @return {Number} The result of `a * b`.
* @example
*
* var double = R.multiply(2);
* var triple = R.multiply(3);
* double(3); //=> 6
* triple(4); //=> 12
* R.multiply(2, 5); //=> 10
*/
var multiply = _curry2(_multiply);
/**
* Wraps a function of any arity (including nullary) in a function that accepts exactly `n`
* parameters. Any extraneous parameters will not be passed to the supplied function.
*
* @func
* @memberOf R
* @category Function
* @sig Number -> (* -> a) -> (* -> a)
* @param {Number} n The desired arity of the new function.
* @param {Function} fn The function to wrap.
* @return {Function} A new function wrapping `fn`. The new function is guaranteed to be of
* arity `n`.
* @example
*
* var takesTwoArgs = function(a, b) {
* return [a, b];
* };
* takesTwoArgs.length; //=> 2
* takesTwoArgs(1, 2); //=> [1, 2]
*
* var takesOneArg = R.nAry(1, takesTwoArgs);
* takesOneArg.length; //=> 1
* // Only `n` arguments are passed to the wrapped function
* takesOneArg(1, 2); //=> [1, undefined]
*/
var nAry = _curry2(function (n, fn) {
switch (n) {
case 0:
return function () {
return fn.call(this);
};
case 1:
return function (a0) {
return fn.call(this, a0);
};
case 2:
return function (a0, a1) {
return fn.call(this, a0, a1);
};
case 3:
return function (a0, a1, a2) {
return fn.call(this, a0, a1, a2);
};
case 4:
return function (a0, a1, a2, a3) {
return fn.call(this, a0, a1, a2, a3);
};
case 5:
return function (a0, a1, a2, a3, a4) {
return fn.call(this, a0, a1, a2, a3, a4);
};
case 6:
return function (a0, a1, a2, a3, a4, a5) {
return fn.call(this, a0, a1, a2, a3, a4, a5);
};
case 7:
return function (a0, a1, a2, a3, a4, a5, a6) {
return fn.call(this, a0, a1, a2, a3, a4, a5, a6);
};
case 8:
return function (a0, a1, a2, a3, a4, a5, a6, a7) {
return fn.call(this, a0, a1, a2, a3, a4, a5, a6, a7);
};
case 9:
return function (a0, a1, a2, a3, a4, a5, a6, a7, a8) {
return fn.call(this, a0, a1, a2, a3, a4, a5, a6, a7, a8);
};
case 10:
return function (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) {
return fn.call(this, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9);
};
default:
throw new Error('First argument to nAry must be a non-negative integer no greater than ten');
}
});
/**
* Negates its argument.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number
* @param {Number} n
* @return {Number}
* @example
*
* R.negate(42); //=> -42
*/
var negate = _curry1(function negate(n) {
return -n;
});
/**
* A function that returns the `!` of its argument. It will return `true` when
* passed false-y value, and `false` when passed a truth-y one.
*
* @func
* @memberOf R
* @category Logic
* @sig * -> Boolean
* @param {*} a any value
* @return {Boolean} the logical inverse of passed argument.
* @see R.complement
* @example
*
* R.not(true); //=> false
* R.not(false); //=> true
* R.not(0); => true
* R.not(1); => false
*/
var not = _curry1(function not(a) {
return !a;
});
/**
* Returns the nth element in a list.
* If n is negative the element at index length + n is returned.
*
* @func
* @memberOf R
* @category List
* @sig Number -> [a] -> a
* @param {Number} idx
* @param {Array} list
* @return {*} The nth element of the list.
* @example
*
* var list = ['foo', 'bar', 'baz', 'quux'];
* R.nth(1, list); //=> 'bar'
* R.nth(-1, list); //=> 'quux'
* R.nth(-99, list); //=> undefined
*/
var nth = _curry2(_nth);
/**
* Returns a function which returns its nth argument.
*
* @func
* @memberOf R
* @category Function
* @sig Number -> *... -> *
* @param {Number} n
* @return {Function}
* @example
*
* R.nthArg(1)('a', 'b', 'c'); //=> 'b'
* R.nthArg(-1)('a', 'b', 'c'); //=> 'c'
*/
var nthArg = _curry1(function nthArg(n) {
return function () {
return _nth(n, arguments);
};
});
/**
* Returns the nth character of the given string.
*
* @func
* @memberOf R
* @category String
* @sig Number -> String -> String
* @param {Number} n
* @param {String} str
* @return {String}
* @example
*
* R.nthChar(2, 'Ramda'); //=> 'm'
* R.nthChar(-2, 'Ramda'); //=> 'd'
*/
var nthChar = _curry2(function nthChar(n, str) {
return str.charAt(n < 0 ? str.length + n : n);
});
/**
* Returns the character code of the nth character of the given string.
*
* @func
* @memberOf R
* @category String
* @sig Number -> String -> Number
* @param {Number} n
* @param {String} str
* @return {Number}
* @example
*
* R.nthCharCode(2, 'Ramda'); //=> 'm'.charCodeAt(0)
* R.nthCharCode(-2, 'Ramda'); //=> 'd'.charCodeAt(0)
*/
var nthCharCode = _curry2(function nthCharCode(n, str) {
return str.charCodeAt(n < 0 ? str.length + n : n);
});
/**
* Returns a singleton array containing the value provided.
*
* Note this `of` is different from the ES6 `of`; See
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/of
*
* @func
* @memberOf R
* @category Function
* @sig a -> [a]
* @param {*} x any value
* @return {Array} An array wrapping `x`.
* @example
*
* R.of(null); //=> [null]
* R.of([42]); //=> [[42]]
*/
var of = _curry1(function of(x) {
return [x];
});
/**
* Accepts a function `fn` and returns a function that guards invocation of `fn` such that
* `fn` can only ever be called once, no matter how many times the returned function is
* invoked.
*
* @func
* @memberOf R
* @category Function
* @sig (a... -> b) -> (a... -> b)
* @param {Function} fn The function to wrap in a call-only-once wrapper.
* @return {Function} The wrapped function.
* @example
*
* var addOneOnce = R.once(function(x){ return x + 1; });
* addOneOnce(10); //=> 11
* addOneOnce(addOneOnce(50)); //=> 11
*/
var once = _curry1(function once(fn) {
var called = false, result;
return function () {
if (called) {
return result;
}
called = true;
result = fn.apply(this, arguments);
return result;
};
});
/**
* Retrieve the value at a given path.
*
* @func
* @memberOf R
* @category Object
* @sig [String] -> {*} -> *
* @param {Array} path The path to use.
* @return {*} The data at `path`.
* @example
*
* R.path(['a', 'b'], {a: {b: 2}}); //=> 2
*/
var path = _curry2(_path);
/**
* Returns a partial copy of an object containing only the keys specified. If the key does not exist, the
* property is ignored.
*
* @func
* @memberOf R
* @category Object
* @sig [k] -> {k: v} -> {k: v}
* @param {Array} names an array of String property names to copy onto a new object
* @param {Object} obj The object to copy from
* @return {Object} A new object with only properties from `names` on it.
* @example
*
* R.pick(['a', 'd'], {a: 1, b: 2, c: 3, d: 4}); //=> {a: 1, d: 4}
* R.pick(['a', 'e', 'f'], {a: 1, b: 2, c: 3, d: 4}); //=> {a: 1}
*/
var pick = _curry2(function pick(names, obj) {
var result = {};
var idx = 0;
while (idx < names.length) {
if (names[idx] in obj) {
result[names[idx]] = obj[names[idx]];
}
idx += 1;
}
return result;
});
/**
* Similar to `pick` except that this one includes a `key: undefined` pair for properties that don't exist.
*
* @func
* @memberOf R
* @category Object
* @sig [k] -> {k: v} -> {k: v}
* @param {Array} names an array of String property names to copy onto a new object
* @param {Object} obj The object to copy from
* @return {Object} A new object with only properties from `names` on it.
* @see R.pick
* @example
*
* R.pickAll(['a', 'd'], {a: 1, b: 2, c: 3, d: 4}); //=> {a: 1, d: 4}
* R.pickAll(['a', 'e', 'f'], {a: 1, b: 2, c: 3, d: 4}); //=> {a: 1, e: undefined, f: undefined}
*/
var pickAll = _curry2(function pickAll(names, obj) {
var result = {};
var idx = 0;
var len = names.length;
while (idx < len) {
var name = names[idx];
result[name] = obj[name];
idx += 1;
}
return result;
});
/**
* Returns a partial copy of an object containing only the keys that
* satisfy the supplied predicate.
*
* @func
* @memberOf R
* @category Object
* @sig (v, k -> Boolean) -> {k: v} -> {k: v}
* @param {Function} pred A predicate to determine whether or not a key
* should be included on the output object.
* @param {Object} obj The object to copy from
* @return {Object} A new object with only properties that satisfy `pred`
* on it.
* @see R.pick
* @example
*
* var isUpperCase = function(val, key) { return key.toUpperCase() === key; }
* R.pickBy(isUpperCase, {a: 1, b: 2, A: 3, B: 4}); //=> {A: 3, B: 4}
*/
var pickBy = _curry2(function pickBy(test, obj) {
var result = {};
for (var prop in obj) {
if (test(obj[prop], prop, obj)) {
result[prop] = obj[prop];
}
}
return result;
});
/**
* Returns a new list with the given element at the front, followed by the contents of the
* list.
*
* @func
* @memberOf R
* @category List
* @sig a -> [a] -> [a]
* @param {*} el The item to add to the head of the output list.
* @param {Array} list The array to add to the tail of the output list.
* @return {Array} A new array.
* @example
*
* R.prepend('fee', ['fi', 'fo', 'fum']); //=> ['fee', 'fi', 'fo', 'fum']
*/
var prepend = _curry2(_prepend);
/**
* Returns a function that when supplied an object returns the indicated property of that object, if it exists.
*
* @func
* @memberOf R
* @category Object
* @sig s -> {s: a} -> a
* @param {String} p The property name
* @param {Object} obj The object to query
* @return {*} The value at `obj.p`.
* @example
*
* R.prop('x', {x: 100}); //=> 100
* R.prop('x', {}); //=> undefined
*/
var prop = _curry2(function prop(p, obj) {
return obj[p];
});
/**
* If the given, non-null object has an own property with the specified name,
* returns the value of that property.
* Otherwise returns the provided default value.
*
* @func
* @memberOf R
* @category Object
* @sig a -> String -> Object -> a
* @param {*} val The default value.
* @param {String} p The name of the property to return.
* @param {Object} obj The object to query.
* @return {*} The value of given property of the supplied object or the default value.
* @example
*
* var alice = {
* name: 'ALICE',
* age: 101
* };
* var favorite = R.prop('favoriteLibrary');
* var favoriteWithDefault = R.propOr('Ramda', 'favoriteLibrary');
*
* favorite(alice); //=> undefined
* favoriteWithDefault(alice); //=> 'Ramda'
*/
var propOr = _curry3(function propOr(val, p, obj) {
return obj != null && _has(p, obj) ? obj[p] : val;
});
/**
* Acts as multiple `get`: array of keys in, array of values out. Preserves order.
*
* @func
* @memberOf R
* @category Object
* @sig [k] -> {k: v} -> [v]
* @param {Array} ps The property names to fetch
* @param {Object} obj The object to query
* @return {Array} The corresponding values or partially applied function.
* @example
*
* R.props(['x', 'y'], {x: 1, y: 2}); //=> [1, 2]
* R.props(['c', 'a', 'b'], {b: 2, a: 1}); //=> [undefined, 1, 2]
*
* var fullName = R.compose(R.join(' '), R.props(['first', 'last']));
* fullName({last: 'Bullet-Tooth', age: 33, first: 'Tony'}); //=> 'Tony Bullet-Tooth'
*/
var props = _curry2(function props(ps, obj) {
var len = ps.length;
var out = [];
var idx = 0;
while (idx < len) {
out[idx] = obj[ps[idx]];
idx += 1;
}
return out;
});
/**
* Returns a list of numbers from `from` (inclusive) to `to`
* (exclusive).
*
* @func
* @memberOf R
* @category List
* @sig Number -> Number -> [Number]
* @param {Number} from The first number in the list.
* @param {Number} to One more than the last number in the list.
* @return {Array} The list of numbers in tthe set `[a, b)`.
* @example
*
* R.range(1, 5); //=> [1, 2, 3, 4]
* R.range(50, 53); //=> [50, 51, 52]
*/
var range = _curry2(function range(from, to) {
var result = [];
var n = from;
while (n < to) {
result[result.length] = n;
n += 1;
}
return result;
});
/**
* Like `reduce`, but passes additional parameters to the predicate function.
*
* The iterator function receives four values: *(acc, value, index, list)*
*
* Note: `R.reduceIndexed` does not skip deleted or unassigned indices (sparse arrays),
* unlike the native `Array.prototype.reduce` method. For more details on this behavior,
* see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce#Description
*
* @func
* @memberOf R
* @category List
* @sig (a,b,i,[b] -> a) -> a -> [b] -> a
* @param {Function} fn The iterator function. Receives four values: the accumulator, the
* current element from `list`, that element's index, and the entire `list` itself.
* @param {*} acc The accumulator value.
* @param {Array} list The list to iterate over.
* @return {*} The final, accumulated value.
* @deprecated since v0.15.0
* @see R.addIndex
* @example
*
* var letters = ['a', 'b', 'c'];
* var objectify = function(accObject, elem, idx, list) {
* accObject[elem] = idx;
* return accObject;
* };
*
* R.reduceIndexed(objectify, {}, letters); //=> { 'a': 0, 'b': 1, 'c': 2 }
*/
var reduceIndexed = _curry3(function reduceIndexed(fn, acc, list) {
var idx = 0, len = list.length;
while (idx < len) {
acc = fn(acc, list[idx], idx, list);
idx += 1;
}
return acc;
});
/**
* Returns a single item by iterating through the list, successively calling the iterator
* function and passing it an accumulator value and the current value from the array, and
* then passing the result to the next call.
*
* Similar to `reduce`, except moves through the input list from the right to the left.
*
* The iterator function receives two values: *(acc, value)*
*
* Note: `R.reduceRight` does not skip deleted or unassigned indices (sparse arrays), unlike
* the native `Array.prototype.reduce` method. For more details on this behavior, see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduceRight#Description
*
* @func
* @memberOf R
* @category List
* @sig (a,b -> a) -> a -> [b] -> a
* @param {Function} fn The iterator function. Receives two values, the accumulator and the
* current element from the array.
* @param {*} acc The accumulator value.
* @param {Array} list The list to iterate over.
* @return {*} The final, accumulated value.
* @example
*
* var pairs = [ ['a', 1], ['b', 2], ['c', 3] ];
* var flattenPairs = function(acc, pair) {
* return acc.concat(pair);
* };
*
* R.reduceRight(flattenPairs, [], pairs); //=> [ 'c', 3, 'b', 2, 'a', 1 ]
*/
var reduceRight = _curry3(function reduceRight(fn, acc, list) {
var idx = list.length - 1;
while (idx >= 0) {
acc = fn(acc, list[idx]);
idx -= 1;
}
return acc;
});
/**
* Like `reduceRight`, but passes additional parameters to the predicate function. Moves through
* the input list from the right to the left.
*
* The iterator function receives four values: *(acc, value, index, list)*.
*
* Note: `R.reduceRightIndexed` does not skip deleted or unassigned indices (sparse arrays),
* unlike the native `Array.prototype.reduce` method. For more details on this behavior,
* see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduceRight#Description
*
* @func
* @memberOf R
* @category List
* @sig (a,b,i,[b] -> a -> [b] -> a
* @param {Function} fn The iterator function. Receives four values: the accumulator, the
* current element from `list`, that element's index, and the entire `list` itself.
* @param {*} acc The accumulator value.
* @param {Array} list The list to iterate over.
* @return {*} The final, accumulated value.
* @deprecated since v0.15.0
* @see R.addIndex
* @example
*
* var letters = ['a', 'b', 'c'];
* var objectify = function(accObject, elem, idx, list) {
* accObject[elem] = idx;
* return accObject;
* };
*
* R.reduceRightIndexed(objectify, {}, letters); //=> { 'c': 2, 'b': 1, 'a': 0 }
*/
var reduceRightIndexed = _curry3(function reduceRightIndexed(fn, acc, list) {
var idx = list.length - 1;
while (idx >= 0) {
acc = fn(acc, list[idx], idx, list);
idx -= 1;
}
return acc;
});
/**
* Returns a value wrapped to indicate that it is the final value of the
* reduce and transduce functions. The returned value
* should be considered a black box: the internal structure is not
* guaranteed to be stable.
*
* Note: this optimization is unavailable to functions not explicitly listed
* above. For instance, it is not currently supported by reduceIndexed,
* reduceRight, or reduceRightIndexed.
* @see R.reduce
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig a -> *
* @param {*} x The final value of the reduce.
* @return {*} The wrapped value.
* @example
*
* R.reduce(
* R.pipe(R.add, R.ifElse(R.lte(10), R.reduced, R.identity)),
* 0,
* [1, 2, 3, 4, 5]) // 10
*/
var reduced = _curry1(_reduced);
/**
* Like `reject`, but passes additional parameters to the predicate function. The predicate
* function is passed three arguments: *(value, index, list)*.
*
* @func
* @memberOf R
* @category List
* @sig (a, i, [a] -> Boolean) -> [a] -> [a]
* @param {Function} fn The function called per iteration.
* @param {Array} list The collection to iterate over.
* @return {Array} The new filtered array.
* @deprecated since v0.15.0
* @see R.addIndex
* @example
*
* var lastTwo = function(val, idx, list) {
* return list.length - idx <= 2;
* };
*
* R.rejectIndexed(lastTwo, [8, 6, 7, 5, 3, 0, 9]); //=> [8, 6, 7, 5, 3]
*/
var rejectIndexed = _curry2(function rejectIndexed(fn, list) {
return _filterIndexed(_complement(fn), list);
});
/**
* Removes the sub-list of `list` starting at index `start` and containing
* `count` elements. _Note that this is not destructive_: it returns a
* copy of the list with the changes.
* <small>No lists have been harmed in the application of this function.</small>
*
* @func
* @memberOf R
* @category List
* @sig Number -> Number -> [a] -> [a]
* @param {Number} start The position to start removing elements
* @param {Number} count The number of elements to remove
* @param {Array} list The list to remove from
* @return {Array} A new Array with `count` elements from `start` removed.
* @example
*
* R.remove(2, 3, [1,2,3,4,5,6,7,8]); //=> [1,2,6,7,8]
*/
var remove = _curry3(function remove(start, count, list) {
return _concat(_slice(list, 0, Math.min(start, list.length)), _slice(list, Math.min(list.length, start + count)));
});
/**
* Replace a substring or regex match in a string with a replacement.
*
* @func
* @memberOf R
* @category String
* @sig RegExp|String -> String -> String -> String
* @param {RegExp|String} pattern A regular expression or a substring to match.
* @param {String} replacement The string to replace the matches with.
* @param {String} str The String to do the search and replacement in.
* @return {String} The result.
* @example
*
* R.replace('foo', 'bar', 'foo foo foo'); //=> 'bar foo foo'
* R.replace(/foo/, 'bar', 'foo foo foo'); //=> 'bar foo foo'
*
* // Use the "g" (global) flag to replace all occurrences:
* R.replace(/foo/g, 'bar', 'foo foo foo'); //=> 'bar bar bar'
*/
var replace = _curry3(function replace(regex, replacement, str) {
return str.replace(regex, replacement);
});
/**
* Returns a new list with the same elements as the original list, just
* in the reverse order.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [a]
* @param {Array} list The list to reverse.
* @return {Array} A copy of the list in reverse order.
* @example
*
* R.reverse([1, 2, 3]); //=> [3, 2, 1]
* R.reverse([1, 2]); //=> [2, 1]
* R.reverse([1]); //=> [1]
* R.reverse([]); //=> []
*/
var reverse = _curry1(function reverse(list) {
return _slice(list).reverse();
});
/**
* Scan is similar to reduce, but returns a list of successively reduced values from the left
*
* @func
* @memberOf R
* @category List
* @sig (a,b -> a) -> a -> [b] -> [a]
* @param {Function} fn The iterator function. Receives two values, the accumulator and the
* current element from the array
* @param {*} acc The accumulator value.
* @param {Array} list The list to iterate over.
* @return {Array} A list of all intermediately reduced values.
* @example
*
* var numbers = [1, 2, 3, 4];
* var factorials = R.scan(R.multiply, 1, numbers); //=> [1, 1, 2, 6, 24]
*/
var scan = _curry3(function scan(fn, acc, list) {
var idx = 0, len = list.length, result = [acc];
while (idx < len) {
acc = fn(acc, list[idx]);
result[idx + 1] = acc;
idx += 1;
}
return result;
});
/**
* Returns a copy of the list, sorted according to the comparator function, which should accept two values at a
* time and return a negative number if the first value is smaller, a positive number if it's larger, and zero
* if they are equal. Please note that this is a **copy** of the list. It does not modify the original.
*
* @func
* @memberOf R
* @category List
* @sig (a,a -> Number) -> [a] -> [a]
* @param {Function} comparator A sorting function :: a -> b -> Int
* @param {Array} list The list to sort
* @return {Array} a new array with its elements sorted by the comparator function.
* @example
*
* var diff = function(a, b) { return a - b; };
* R.sort(diff, [4,2,7,5]); //=> [2, 4, 5, 7]
*/
var sort = _curry2(function sort(comparator, list) {
return _slice(list).sort(comparator);
});
/**
* Sorts the list according to the supplied function.
*
* @func
* @memberOf R
* @category Relation
* @sig Ord b => (a -> b) -> [a] -> [a]
* @param {Function} fn
* @param {Array} list The list to sort.
* @return {Array} A new list sorted by the keys generated by `fn`.
* @example
*
* var sortByFirstItem = R.sortBy(prop(0));
* var sortByNameCaseInsensitive = R.sortBy(compose(R.toLower, prop('name')));
* var pairs = [[-1, 1], [-2, 2], [-3, 3]];
* sortByFirstItem(pairs); //=> [[-3, 3], [-2, 2], [-1, 1]]
* var alice = {
* name: 'ALICE',
* age: 101
* };
* var bob = {
* name: 'Bob',
* age: -10
* };
* var clara = {
* name: 'clara',
* age: 314.159
* };
* var people = [clara, bob, alice];
* sortByNameCaseInsensitive(people); //=> [alice, bob, clara]
*/
var sortBy = _curry2(function sortBy(fn, list) {
return _slice(list).sort(function (a, b) {
var aa = fn(a);
var bb = fn(b);
return aa < bb ? -1 : aa > bb ? 1 : 0;
});
});
/**
* Finds the first index of a substring in a string, returning -1 if it's not present
*
* @func
* @memberOf R
* @category String
* @sig String -> String -> Number
* @param {String} c A string to find.
* @param {String} str The string to search in
* @return {Number} The first index of `c` or -1 if not found.
* @deprecated since v0.15.0
* @example
*
* R.strIndexOf('c', 'abcdefg'); //=> 2
*/
var strIndexOf = _curry2(function strIndexOf(c, str) {
return str.indexOf(c);
});
/**
*
* Finds the last index of a substring in a string, returning -1 if it's not present
*
* @func
* @memberOf R
* @category String
* @sig String -> String -> Number
* @param {String} c A string to find.
* @param {String} str The string to search in
* @return {Number} The last index of `c` or -1 if not found.
* @deprecated since v0.15.0
* @example
*
* R.strLastIndexOf('a', 'banana split'); //=> 5
*/
var strLastIndexOf = _curry2(function (c, str) {
return str.lastIndexOf(c);
});
/**
* Subtracts two numbers. Equivalent to `a - b` but curried.
*
* @func
* @memberOf R
* @category Math
* @sig Number -> Number -> Number
* @param {Number} a The first value.
* @param {Number} b The second value.
* @return {Number} The result of `a - b`.
* @example
*
* R.subtract(10, 8); //=> 2
*
* var minus5 = R.subtract(R.__, 5);
* minus5(17); //=> 12
*
* var complementaryAngle = R.subtract(90);
* complementaryAngle(30); //=> 60
* complementaryAngle(72); //=> 18
*/
var subtract = _curry2(function subtract(a, b) {
return a - b;
});
/**
* Runs the given function with the supplied object, then returns the object.
*
* @func
* @memberOf R
* @category Function
* @sig (a -> *) -> a -> a
* @param {Function} fn The function to call with `x`. The return value of `fn` will be thrown away.
* @param {*} x
* @return {*} `x`.
* @example
*
* var sayX = function(x) { console.log('x is ' + x); };
* R.tap(sayX, 100); //=> 100
* //-> 'x is 100'
*/
var tap = _curry2(function tap(fn, x) {
fn(x);
return x;
});
/**
* Determines whether a given string matches a given regular expression.
*
* @func
* @memberOf R
* @category String
* @sig RegExp -> String -> Boolean
* @param {RegExp} pattern
* @param {String} str
* @return {Boolean}
* @example
*
* R.test(/^x/, 'xyz'); //=> true
* R.test(/^y/, 'xyz'); //=> false
*/
var test = _curry2(function test(pattern, str) {
return _cloneRegExp(pattern).test(str);
});
/**
* Calls an input function `n` times, returning an array containing the results of those
* function calls.
*
* `fn` is passed one argument: The current value of `n`, which begins at `0` and is
* gradually incremented to `n - 1`.
*
* @func
* @memberOf R
* @category List
* @sig (i -> a) -> i -> [a]
* @param {Function} fn The function to invoke. Passed one argument, the current value of `n`.
* @param {Number} n A value between `0` and `n - 1`. Increments after each function call.
* @return {Array} An array containing the return values of all calls to `fn`.
* @example
*
* R.times(R.identity, 5); //=> [0, 1, 2, 3, 4]
*/
var times = _curry2(function times(fn, n) {
var len = Number(n);
var list = new Array(len);
var idx = 0;
while (idx < len) {
list[idx] = fn(idx);
idx += 1;
}
return list;
});
/**
* Converts an object into an array of key, value arrays.
* Only the object's own properties are used.
* Note that the order of the output array is not guaranteed to be
* consistent across different JS platforms.
*
* @func
* @memberOf R
* @category Object
* @sig {String: *} -> [[String,*]]
* @param {Object} obj The object to extract from
* @return {Array} An array of key, value arrays from the object's own properties.
* @example
*
* R.toPairs({a: 1, b: 2, c: 3}); //=> [['a', 1], ['b', 2], ['c', 3]]
*/
var toPairs = _curry1(function toPairs(obj) {
var pairs = [];
for (var prop in obj) {
if (_has(prop, obj)) {
pairs[pairs.length] = [
prop,
obj[prop]
];
}
}
return pairs;
});
/**
* Converts an object into an array of key, value arrays.
* The object's own properties and prototype properties are used.
* Note that the order of the output array is not guaranteed to be
* consistent across different JS platforms.
*
* @func
* @memberOf R
* @category Object
* @sig {String: *} -> [[String,*]]
* @param {Object} obj The object to extract from
* @return {Array} An array of key, value arrays from the object's own
* and prototype properties.
* @example
*
* var F = function() { this.x = 'X'; };
* F.prototype.y = 'Y';
* var f = new F();
* R.toPairsIn(f); //=> [['x','X'], ['y','Y']]
*/
var toPairsIn = _curry1(function toPairsIn(obj) {
var pairs = [];
for (var prop in obj) {
pairs[pairs.length] = [
prop,
obj[prop]
];
}
return pairs;
});
/**
* Removes (strips) whitespace from both ends of the string.
*
* @func
* @memberOf R
* @category String
* @sig String -> String
* @param {String} str The string to trim.
* @return {String} Trimmed version of `str`.
* @example
*
* R.trim(' xyz '); //=> 'xyz'
* R.map(R.trim, R.split(',', 'x, y, z')); //=> ['x', 'y', 'z']
*/
var trim = function () {
var ws = '\t\n\x0B\f\r \xA0\u1680\u180E\u2000\u2001\u2002\u2003' + '\u2004\u2005\u2006\u2007\u2008\u2009\u200A\u202F\u205F\u3000\u2028' + '\u2029\uFEFF';
var zeroWidth = '\u200B';
var hasProtoTrim = typeof String.prototype.trim === 'function';
if (!hasProtoTrim || (ws.trim() || !zeroWidth.trim())) {
return _curry1(function trim(str) {
var beginRx = new RegExp('^[' + ws + '][' + ws + ']*');
var endRx = new RegExp('[' + ws + '][' + ws + ']*$');
return str.replace(beginRx, '').replace(endRx, '');
});
} else {
return _curry1(function trim(str) {
return str.trim();
});
}
}();
/**
* Gives a single-word string description of the (native) type of a value, returning such
* answers as 'Object', 'Number', 'Array', or 'Null'. Does not attempt to distinguish user
* Object types any further, reporting them all as 'Object'.
*
* @func
* @memberOf R
* @category Type
* @sig (* -> {*}) -> String
* @param {*} val The value to test
* @return {String}
* @example
*
* R.type({}); //=> "Object"
* R.type(1); //=> "Number"
* R.type(false); //=> "Boolean"
* R.type('s'); //=> "String"
* R.type(null); //=> "Null"
* R.type([]); //=> "Array"
* R.type(/[A-z]/); //=> "RegExp"
*/
var type = _curry1(function type(val) {
return val === null ? 'Null' : val === undefined ? 'Undefined' : Object.prototype.toString.call(val).slice(8, -1);
});
/**
* Takes a function `fn`, which takes a single array argument, and returns
* a function which:
*
* - takes any number of positional arguments;
* - passes these arguments to `fn` as an array; and
* - returns the result.
*
* In other words, R.unapply derives a variadic function from a function
* which takes an array. R.unapply is the inverse of R.apply.
*
* @func
* @memberOf R
* @category Function
* @sig ([*...] -> a) -> (*... -> a)
* @param {Function} fn
* @return {Function}
* @see R.apply
* @example
*
* R.unapply(JSON.stringify)(1, 2, 3); //=> '[1,2,3]'
*/
var unapply = _curry1(function unapply(fn) {
return function () {
return fn(_slice(arguments));
};
});
/**
* Wraps a function of any arity (including nullary) in a function that accepts exactly 1
* parameter. Any extraneous parameters will not be passed to the supplied function.
*
* @func
* @memberOf R
* @category Function
* @sig (* -> b) -> (a -> b)
* @param {Function} fn The function to wrap.
* @return {Function} A new function wrapping `fn`. The new function is guaranteed to be of
* arity 1.
* @example
*
* var takesTwoArgs = function(a, b) {
* return [a, b];
* };
* takesTwoArgs.length; //=> 2
* takesTwoArgs(1, 2); //=> [1, 2]
*
* var takesOneArg = R.unary(takesTwoArgs);
* takesOneArg.length; //=> 1
* // Only 1 argument is passed to the wrapped function
* takesOneArg(1, 2); //=> [1, undefined]
*/
var unary = _curry1(function unary(fn) {
return nAry(1, fn);
});
/**
* Builds a list from a seed value. Accepts an iterator function, which returns either false
* to stop iteration or an array of length 2 containing the value to add to the resulting
* list and the seed to be used in the next call to the iterator function.
*
* The iterator function receives one argument: *(seed)*.
*
* @func
* @memberOf R
* @category List
* @sig (a -> [b]) -> * -> [b]
* @param {Function} fn The iterator function. receives one argument, `seed`, and returns
* either false to quit iteration or an array of length two to proceed. The element
* at index 0 of this array will be added to the resulting array, and the element
* at index 1 will be passed to the next call to `fn`.
* @param {*} seed The seed value.
* @return {Array} The final list.
* @example
*
* var f = function(n) { return n > 50 ? false : [-n, n + 10] };
* R.unfold(f, 10); //=> [-10, -20, -30, -40, -50]
*/
var unfold = _curry2(function unfold(fn, seed) {
var pair = fn(seed);
var result = [];
while (pair && pair.length) {
result[result.length] = pair[0];
pair = fn(pair[1]);
}
return result;
});
/**
* Returns a new list containing only one copy of each element in the original list, based
* upon the value returned by applying the supplied predicate to two list elements. Prefers
* the first item if two items compare equal based on the predicate.
*
* @func
* @memberOf R
* @category List
* @sig (a, a -> Boolean) -> [a] -> [a]
* @param {Function} pred A predicate used to test whether two items are equal.
* @param {Array} list The array to consider.
* @return {Array} The list of unique items.
* @example
*
* var strEq = function(a, b) { return String(a) === String(b); };
* R.uniqWith(strEq)([1, '1', 2, 1]); //=> [1, 2]
* R.uniqWith(strEq)([{}, {}]); //=> [{}]
* R.uniqWith(strEq)([1, '1', 1]); //=> [1]
* R.uniqWith(strEq)(['1', 1, 1]); //=> ['1']
*/
var uniqWith = _curry2(function uniqWith(pred, list) {
var idx = 0, len = list.length;
var result = [], item;
while (idx < len) {
item = list[idx];
if (!_containsWith(pred, item, result)) {
result[result.length] = item;
}
idx += 1;
}
return result;
});
/**
* Returns a new copy of the array with the element at the
* provided index replaced with the given value.
* @see R.adjust
*
* @func
* @memberOf R
* @category List
* @sig Number -> a -> [a] -> [a]
* @param {Number} idx The index to update.
* @param {*} x The value to exist at the given index of the returned array.
* @param {Array|Arguments} list The source array-like object to be updated.
* @return {Array} A copy of `list` with the value at index `idx` replaced with `x`.
* @example
*
* R.update(1, 11, [0, 1, 2]); //=> [0, 11, 2]
* R.update(1)(11)([0, 1, 2]); //=> [0, 11, 2]
*/
var update = _curry3(function (idx, x, list) {
return adjust(always(x), idx, list);
});
/**
* Returns a list of all the enumerable own properties of the supplied object.
* Note that the order of the output array is not guaranteed across
* different JS platforms.
*
* @func
* @memberOf R
* @category Object
* @sig {k: v} -> [v]
* @param {Object} obj The object to extract values from
* @return {Array} An array of the values of the object's own properties.
* @example
*
* R.values({a: 1, b: 2, c: 3}); //=> [1, 2, 3]
*/
var values = _curry1(function values(obj) {
var props = keys(obj);
var len = props.length;
var vals = [];
var idx = 0;
while (idx < len) {
vals[idx] = obj[props[idx]];
idx += 1;
}
return vals;
});
/**
* Returns a list of all the properties, including prototype properties,
* of the supplied object.
* Note that the order of the output array is not guaranteed to be
* consistent across different JS platforms.
*
* @func
* @memberOf R
* @category Object
* @sig {k: v} -> [v]
* @param {Object} obj The object to extract values from
* @return {Array} An array of the values of the object's own and prototype properties.
* @example
*
* var F = function() { this.x = 'X'; };
* F.prototype.y = 'Y';
* var f = new F();
* R.valuesIn(f); //=> ['X', 'Y']
*/
var valuesIn = _curry1(function valuesIn(obj) {
var prop, vs = [];
for (prop in obj) {
vs[vs.length] = obj[prop];
}
return vs;
});
/**
* Takes a spec object and a test object; returns true if the test satisfies
* the spec. Each of the spec's own properties must be a predicate function.
* Each predicate is applied to the value of the corresponding property of
* the test object. `where` returns true if all the predicates return true,
* false otherwise.
*
* `where` is well suited to declaratively expressing constraints for other
* functions such as `filter` and `find`.
*
* @func
* @memberOf R
* @category Object
* @sig {String: (* -> Boolean)} -> {String: *} -> Boolean
* @param {Object} spec
* @param {Object} testObj
* @return {Boolean}
* @example
*
* // pred :: Object -> Boolean
* var pred = R.where({
* a: R.equals('foo'),
* b: R.complement(R.equals('bar')),
* x: R.gt(_, 10),
* y: R.lt(_, 20)
* });
*
* pred({a: 'foo', b: 'xxx', x: 11, y: 19}); //=> true
* pred({a: 'xxx', b: 'xxx', x: 11, y: 19}); //=> false
* pred({a: 'foo', b: 'bar', x: 11, y: 19}); //=> false
* pred({a: 'foo', b: 'xxx', x: 10, y: 19}); //=> false
* pred({a: 'foo', b: 'xxx', x: 11, y: 20}); //=> false
*/
var where = _curry2(function where(spec, testObj) {
for (var prop in spec) {
if (_has(prop, spec) && !spec[prop](testObj[prop])) {
return false;
}
}
return true;
});
/**
* Creates a new list out of the two supplied by creating each possible
* pair from the lists.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [b] -> [[a,b]]
* @param {Array} as The first list.
* @param {Array} bs The second list.
* @return {Array} The list made by combining each possible pair from
* `as` and `bs` into pairs (`[a, b]`).
* @example
*
* R.xprod([1, 2], ['a', 'b']); //=> [[1, 'a'], [1, 'b'], [2, 'a'], [2, 'b']]
*/
// = xprodWith(prepend); (takes about 3 times as long...)
var xprod = _curry2(function xprod(a, b) {
// = xprodWith(prepend); (takes about 3 times as long...)
var idx = 0;
var ilen = a.length;
var j;
var jlen = b.length;
var result = [];
while (idx < ilen) {
j = 0;
while (j < jlen) {
result[result.length] = [
a[idx],
b[j]
];
j += 1;
}
idx += 1;
}
return result;
});
/**
* Creates a new list out of the two supplied by pairing up
* equally-positioned items from both lists. The returned list is
* truncated to the length of the shorter of the two input lists.
* Note: `zip` is equivalent to `zipWith(function(a, b) { return [a, b] })`.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [b] -> [[a,b]]
* @param {Array} list1 The first array to consider.
* @param {Array} list2 The second array to consider.
* @return {Array} The list made by pairing up same-indexed elements of `list1` and `list2`.
* @example
*
* R.zip([1, 2, 3], ['a', 'b', 'c']); //=> [[1, 'a'], [2, 'b'], [3, 'c']]
*/
var zip = _curry2(function zip(a, b) {
var rv = [];
var idx = 0;
var len = Math.min(a.length, b.length);
while (idx < len) {
rv[idx] = [
a[idx],
b[idx]
];
idx += 1;
}
return rv;
});
/**
* Creates a new object out of a list of keys and a list of values.
*
* @func
* @memberOf R
* @category List
* @sig [String] -> [*] -> {String: *}
* @param {Array} keys The array that will be properties on the output object.
* @param {Array} values The list of values on the output object.
* @return {Object} The object made by pairing up same-indexed elements of `keys` and `values`.
* @example
*
* R.zipObj(['a', 'b', 'c'], [1, 2, 3]); //=> {a: 1, b: 2, c: 3}
*/
var zipObj = _curry2(function zipObj(keys, values) {
var idx = 0, len = keys.length, out = {};
while (idx < len) {
out[keys[idx]] = values[idx];
idx += 1;
}
return out;
});
/**
* Creates a new list out of the two supplied by applying the function to
* each equally-positioned pair in the lists. The returned list is
* truncated to the length of the shorter of the two input lists.
*
* @function
* @memberOf R
* @category List
* @sig (a,b -> c) -> [a] -> [b] -> [c]
* @param {Function} fn The function used to combine the two elements into one value.
* @param {Array} list1 The first array to consider.
* @param {Array} list2 The second array to consider.
* @return {Array} The list made by combining same-indexed elements of `list1` and `list2`
* using `fn`.
* @example
*
* var f = function(x, y) {
* // ...
* };
* R.zipWith(f, [1, 2, 3], ['a', 'b', 'c']);
* //=> [f(1, 'a'), f(2, 'b'), f(3, 'c')]
*/
var zipWith = _curry3(function zipWith(fn, a, b) {
var rv = [], idx = 0, len = Math.min(a.length, b.length);
while (idx < len) {
rv[idx] = fn(a[idx], b[idx]);
idx += 1;
}
return rv;
});
/**
* A function that always returns `false`. Any passed in parameters are ignored.
*
* @func
* @memberOf R
* @category Function
* @sig * -> false
* @see R.always
* @return {Boolean} false
* @example
*
* R.F(); //=> false
*/
var F = always(false);
/**
* A function that always returns `true`. Any passed in parameters are ignored.
*
* @func
* @memberOf R
* @category Function
* @sig * -> true
* @see R.always
* @return {Boolean} `true`.
* @example
*
* R.T(); //=> true
*/
var T = always(true);
var _append = function _append(el, list) {
return _concat(list, [el]);
};
var _assocPath = function _assocPath(path, val, obj) {
switch (path.length) {
case 0:
return obj;
case 1:
return _assoc(path[0], val, obj);
default:
return _assoc(path[0], _assocPath(_slice(path, 1), val, Object(obj[path[0]])), obj);
}
};
/**
* Copies an object.
*
* @private
* @param {*} value The value to be copied
* @param {Array} refFrom Array containing the source references
* @param {Array} refTo Array containing the copied source references
* @return {*} The copied value.
*/
var _baseCopy = function _baseCopy(value, refFrom, refTo) {
var copy = function copy(copiedValue) {
var len = refFrom.length;
var idx = 0;
while (idx < len) {
if (value === refFrom[idx]) {
return refTo[idx];
}
idx += 1;
}
refFrom[idx + 1] = value;
refTo[idx + 1] = copiedValue;
for (var key in value) {
copiedValue[key] = _baseCopy(value[key], refFrom, refTo);
}
return copiedValue;
};
switch (type(value)) {
case 'Object':
return copy({});
case 'Array':
return copy([]);
case 'Date':
return new Date(value);
case 'RegExp':
return _cloneRegExp(value);
default:
return value;
}
};
/**
* Similar to hasMethod, this checks whether a function has a [methodname]
* function. If it isn't an array it will execute that function otherwise it will
* default to the ramda implementation.
*
* @private
* @param {Function} fn ramda implemtation
* @param {String} methodname property to check for a custom implementation
* @return {Object} Whatever the return value of the method is.
*/
var _checkForMethod = function _checkForMethod(methodname, fn) {
return function () {
var length = arguments.length;
if (length === 0) {
return fn();
}
var obj = arguments[length - 1];
return _isArray(obj) || typeof obj[methodname] !== 'function' ? fn.apply(this, arguments) : obj[methodname].apply(obj, _slice(arguments, 0, length - 1));
};
};
var _composeL = function _composeL(innerLens, outerLens) {
return lens(_compose(innerLens, outerLens), function (x, source) {
var newInnerValue = innerLens.set(x, outerLens(source));
return outerLens.set(newInnerValue, source);
});
};
/**
* A right-associative two-argument composition function like `_compose`
* but with automatic handling of promises (or, more precisely,
* "thenables"). This function is used to construct a more general
* `composeP` function, which accepts any number of arguments.
*
* @private
* @category Function
* @param {Function} f A function.
* @param {Function} g A function.
* @return {Function} A new function that is the equivalent of `f(g(x))`.
* @example
*
* var Q = require('q');
* var double = function(x) { return x * 2; };
* var squareAsync = function(x) { return Q.when(x * x); };
* var squareAsyncThenDouble = _composeP(double, squareAsync);
*
* squareAsyncThenDouble(5)
* .then(function(result) {
* // the result is now 50.
* });
*/
var _composeP = function _composeP(f, g) {
return function () {
var context = this;
var value = g.apply(this, arguments);
if (_isThenable(value)) {
return value.then(function (result) {
return f.call(context, result);
});
} else {
return f.call(this, value);
}
};
};
/*
* Returns a function that makes a multi-argument version of compose from
* either _compose or _composeP.
*/
var _createComposer = function _createComposer(composeFunction) {
return function () {
var fn = arguments[arguments.length - 1];
var length = fn.length;
var idx = arguments.length - 2;
while (idx >= 0) {
fn = composeFunction(arguments[idx], fn);
idx -= 1;
}
return arity(length, fn);
};
};
/**
* Create a function which takes a list
* and determines the winning value by a comparator. Used internally
* by `R.max` and `R.min`
*
* @private
* @param {Function} compatator a function to compare two items
* @param {*} intialVal, default value if nothing else wins
* @category Math
* @return {Function}
*/
var _createMaxMin = function _createMaxMin(comparator, initialVal) {
return _curry1(function (list) {
var idx = 0, winner = initialVal, computed;
while (idx < list.length) {
computed = +list[idx];
if (comparator(computed, winner)) {
winner = computed;
}
idx += 1;
}
return winner;
});
};
var _createPartialApplicator = function _createPartialApplicator(concat) {
return function (fn) {
var args = _slice(arguments, 1);
return arity(Math.max(0, fn.length - args.length), function () {
return fn.apply(this, concat(args, arguments));
});
};
};
/**
* Internal curryN function.
*
* @private
* @category Function
* @param {Number} length The arity of the curried function.
* @return {array} An array of arguments received thus far.
* @param {Function} fn The function to curry.
*/
var _curryN = function _curryN(length, received, fn) {
return function () {
var combined = [];
var argsIdx = 0;
var left = length;
var combinedIdx = 0;
while (combinedIdx < received.length || argsIdx < arguments.length) {
var result;
if (combinedIdx < received.length && (received[combinedIdx] == null || received[combinedIdx]['@@functional/placeholder'] !== true || argsIdx >= arguments.length)) {
result = received[combinedIdx];
} else {
result = arguments[argsIdx];
argsIdx += 1;
}
combined[combinedIdx] = result;
if (result == null || result['@@functional/placeholder'] !== true) {
left -= 1;
}
combinedIdx += 1;
}
return left <= 0 ? fn.apply(this, combined) : arity(left, _curryN(length, combined, fn));
};
};
/**
* Returns a function that dispatches with different strategies based on the
* object in list position (last argument). If it is an array, executes [fn].
* Otherwise, if it has a function with [methodname], it will execute that
* function (functor case). Otherwise, if it is a transformer, uses transducer
* [xf] to return a new transformer (transducer case). Otherwise, it will
* default to executing [fn].
*
* @private
* @param {String} methodname property to check for a custom implementation
* @param {Function} xf transducer to initialize if object is transformer
* @param {Function} fn default ramda implementation
* @return {Function} A function that dispatches on object in list position
*/
var _dispatchable = function _dispatchable(methodname, xf, fn) {
return function () {
var length = arguments.length;
if (length === 0) {
return fn();
}
var obj = arguments[length - 1];
if (!_isArray(obj)) {
var args = _slice(arguments, 0, length - 1);
if (typeof obj[methodname] === 'function') {
return obj[methodname].apply(obj, args);
}
if (_isTransformer(obj)) {
var transducer = xf.apply(null, args);
return transducer(obj);
}
}
return fn.apply(this, arguments);
};
};
var _dissocPath = function _dissocPath(path, obj) {
switch (path.length) {
case 0:
return obj;
case 1:
return _dissoc(path[0], obj);
default:
var head = path[0];
var tail = _slice(path, 1);
return obj[head] == null ? obj : _assoc(head, _dissocPath(tail, obj[head]), obj);
}
};
// The algorithm used to handle cyclic structures is
// inspired by underscore's isEqual
// RegExp equality algorithm: http://stackoverflow.com/a/10776635
var _equals = function _eqDeep(a, b, stackA, stackB) {
var typeA = type(a);
if (typeA !== type(b)) {
return false;
}
if (typeA === 'Boolean' || typeA === 'Number' || typeA === 'String') {
return typeof a === 'object' ? typeof b === 'object' && identical(a.valueOf(), b.valueOf()) : identical(a, b);
}
if (identical(a, b)) {
return true;
}
if (typeA === 'RegExp') {
// RegExp equality algorithm: http://stackoverflow.com/a/10776635
return a.source === b.source && a.global === b.global && a.ignoreCase === b.ignoreCase && a.multiline === b.multiline && a.sticky === b.sticky && a.unicode === b.unicode;
}
if (Object(a) === a) {
if (typeA === 'Date' && a.getTime() !== b.getTime()) {
return false;
}
var keysA = keys(a);
if (keysA.length !== keys(b).length) {
return false;
}
var idx = stackA.length - 1;
while (idx >= 0) {
if (stackA[idx] === a) {
return stackB[idx] === b;
}
idx -= 1;
}
stackA[stackA.length] = a;
stackB[stackB.length] = b;
idx = keysA.length - 1;
while (idx >= 0) {
var key = keysA[idx];
if (!_has(key, b) || !_eqDeep(b[key], a[key], stackA, stackB)) {
return false;
}
idx -= 1;
}
stackA.pop();
stackB.pop();
return true;
}
return false;
};
/**
* Assigns own enumerable properties of the other object to the destination
* object preferring items in other.
*
* @private
* @memberOf R
* @category Object
* @param {Object} destination The destination object.
* @param {Object} other The other object to merge with destination.
* @return {Object} The destination object.
* @example
*
* _extend({ 'name': 'fred', 'age': 10 }, { 'age': 40 });
* //=> { 'name': 'fred', 'age': 40 }
*/
var _extend = function _extend(destination, other) {
var props = keys(other);
var idx = 0, length = props.length;
while (idx < length) {
destination[props[idx]] = other[props[idx]];
idx += 1;
}
return destination;
};
/**
* Private function that determines whether or not a provided object has a given method.
* Does not ignore methods stored on the object's prototype chain. Used for dynamically
* dispatching Ramda methods to non-Array objects.
*
* @private
* @param {String} methodName The name of the method to check for.
* @param {Object} obj The object to test.
* @return {Boolean} `true` has a given method, `false` otherwise.
* @example
*
* var person = { name: 'John' };
* person.shout = function() { alert(this.name); };
*
* _hasMethod('shout', person); //=> true
* _hasMethod('foo', person); //=> false
*/
var _hasMethod = function _hasMethod(methodName, obj) {
return obj != null && !_isArray(obj) && typeof obj[methodName] === 'function';
};
/**
* `_makeFlat` is a helper function that returns a one-level or fully recursive function
* based on the flag passed in.
*
* @private
*/
var _makeFlat = function _makeFlat(recursive) {
return function flatt(list) {
var value, result = [], idx = 0, j, ilen = list.length, jlen;
while (idx < ilen) {
if (isArrayLike(list[idx])) {
value = recursive ? flatt(list[idx]) : list[idx];
j = 0;
jlen = value.length;
while (j < jlen) {
result[result.length] = value[j];
j += 1;
}
} else {
result[result.length] = list[idx];
}
idx += 1;
}
return result;
};
};
var _reduce = function () {
function _arrayReduce(xf, acc, list) {
var idx = 0, len = list.length;
while (idx < len) {
acc = xf['@@transducer/step'](acc, list[idx]);
if (acc && acc['@@transducer/reduced']) {
acc = acc['@@transducer/value'];
break;
}
idx += 1;
}
return xf['@@transducer/result'](acc);
}
function _iterableReduce(xf, acc, iter) {
var step = iter.next();
while (!step.done) {
acc = xf['@@transducer/step'](acc, step.value);
if (acc && acc['@@transducer/reduced']) {
acc = acc['@@transducer/value'];
break;
}
step = iter.next();
}
return xf['@@transducer/result'](acc);
}
function _methodReduce(xf, acc, obj) {
return xf['@@transducer/result'](obj.reduce(bind(xf['@@transducer/step'], xf), acc));
}
var symIterator = typeof Symbol !== 'undefined' ? Symbol.iterator : '@@iterator';
return function _reduce(fn, acc, list) {
if (typeof fn === 'function') {
fn = _xwrap(fn);
}
if (isArrayLike(list)) {
return _arrayReduce(fn, acc, list);
}
if (typeof list.reduce === 'function') {
return _methodReduce(fn, acc, list);
}
if (list[symIterator] != null) {
return _iterableReduce(fn, acc, list[symIterator]());
}
if (typeof list.next === 'function') {
return _iterableReduce(fn, acc, list);
}
throw new TypeError('reduce: list must be array or iterable');
};
}();
var _xall = function () {
function XAll(f, xf) {
this.xf = xf;
this.f = f;
this.all = true;
}
XAll.prototype['@@transducer/init'] = _xfBase.init;
XAll.prototype['@@transducer/result'] = function (result) {
if (this.all) {
result = this.xf['@@transducer/step'](result, true);
}
return this.xf['@@transducer/result'](result);
};
XAll.prototype['@@transducer/step'] = function (result, input) {
if (!this.f(input)) {
this.all = false;
result = _reduced(this.xf['@@transducer/step'](result, false));
}
return result;
};
return _curry2(function _xall(f, xf) {
return new XAll(f, xf);
});
}();
var _xany = function () {
function XAny(f, xf) {
this.xf = xf;
this.f = f;
this.any = false;
}
XAny.prototype['@@transducer/init'] = _xfBase.init;
XAny.prototype['@@transducer/result'] = function (result) {
if (!this.any) {
result = this.xf['@@transducer/step'](result, false);
}
return this.xf['@@transducer/result'](result);
};
XAny.prototype['@@transducer/step'] = function (result, input) {
if (this.f(input)) {
this.any = true;
result = _reduced(this.xf['@@transducer/step'](result, true));
}
return result;
};
return _curry2(function _xany(f, xf) {
return new XAny(f, xf);
});
}();
var _xdrop = function () {
function XDrop(n, xf) {
this.xf = xf;
this.n = n;
}
XDrop.prototype['@@transducer/init'] = _xfBase.init;
XDrop.prototype['@@transducer/result'] = _xfBase.result;
XDrop.prototype.step = function (result, input) {
if (this.n > 0) {
this.n -= 1;
return result;
}
return this.xf['@@transducer/step'](result, input);
};
return _curry2(function _xdrop(n, xf) {
return new XDrop(n, xf);
});
}();
var _xdropWhile = function () {
function XDropWhile(f, xf) {
this.xf = xf;
this.f = f;
}
XDropWhile.prototype['@@transducer/init'] = _xfBase.init;
XDropWhile.prototype['@@transducer/result'] = _xfBase.result;
XDropWhile.prototype['@@transducer/step'] = function (result, input) {
if (this.f) {
if (this.f(input)) {
return result;
}
this.f = null;
}
return this.xf['@@transducer/step'](result, input);
};
return _curry2(function _xdropWhile(f, xf) {
return new XDropWhile(f, xf);
});
}();
var _xgroupBy = function () {
function XGroupBy(f, xf) {
this.xf = xf;
this.f = f;
this.inputs = {};
}
XGroupBy.prototype['@@transducer/init'] = _xfBase.init;
XGroupBy.prototype['@@transducer/result'] = function (result) {
var key;
for (key in this.inputs) {
if (_has(key, this.inputs)) {
result = this.xf['@@transducer/step'](result, this.inputs[key]);
if (result['@@transducer/reduced']) {
result = result['@@transducer/value'];
break;
}
}
}
return this.xf['@@transducer/result'](result);
};
XGroupBy.prototype['@@transducer/step'] = function (result, input) {
var key = this.f(input);
this.inputs[key] = this.inputs[key] || [
key,
[]
];
this.inputs[key][1] = _append(input, this.inputs[key][1]);
return result;
};
return _curry2(function _xgroupBy(f, xf) {
return new XGroupBy(f, xf);
});
}();
/**
* Returns `true` if all elements of the list match the predicate, `false` if there are any
* that don't.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> Boolean
* @param {Function} fn The predicate function.
* @param {Array} list The array to consider.
* @return {Boolean} `true` if the predicate is satisfied by every element, `false`
* otherwise.
* @example
*
* var lessThan2 = R.flip(R.lt)(2);
* var lessThan3 = R.flip(R.lt)(3);
* R.all(lessThan2)([1, 2]); //=> false
* R.all(lessThan3)([1, 2]); //=> true
*/
var all = _curry2(_dispatchable('all', _xall, _all));
/**
* A function that returns the first argument if it's falsy otherwise the second
* argument. Note that this is NOT short-circuited, meaning that if expressions
* are passed they are both evaluated.
*
* Dispatches to the `and` method of the first argument if applicable.
*
* @func
* @memberOf R
* @category Logic
* @sig * -> * -> *
* @param {*} a any value
* @param {*} b any other value
* @return {*} the first argument if falsy otherwise the second argument.
* @example
*
* R.and(false, true); //=> false
* R.and(0, []); //=> 0
* R.and(null, ''); => null
*/
var and = _curry2(function and(a, b) {
return _hasMethod('and', a) ? a.and(b) : a && b;
});
/**
* Returns `true` if at least one of elements of the list match the predicate, `false`
* otherwise.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> Boolean
* @param {Function} fn The predicate function.
* @param {Array} list The array to consider.
* @return {Boolean} `true` if the predicate is satisfied by at least one element, `false`
* otherwise.
* @example
*
* var lessThan0 = R.flip(R.lt)(0);
* var lessThan2 = R.flip(R.lt)(2);
* R.any(lessThan0)([1, 2]); //=> false
* R.any(lessThan2)([1, 2]); //=> true
*/
var any = _curry2(_dispatchable('any', _xany, _any));
/**
* Returns a new list containing the contents of the given list, followed by the given
* element.
*
* @func
* @memberOf R
* @category List
* @sig a -> [a] -> [a]
* @param {*} el The element to add to the end of the new list.
* @param {Array} list The list whose contents will be added to the beginning of the output
* list.
* @return {Array} A new list containing the contents of the old list followed by `el`.
* @example
*
* R.append('tests', ['write', 'more']); //=> ['write', 'more', 'tests']
* R.append('tests', []); //=> ['tests']
* R.append(['tests'], ['write', 'more']); //=> ['write', 'more', ['tests']]
*/
var append = _curry2(_append);
/**
* Makes a shallow clone of an object, setting or overriding the nodes
* required to create the given path, and placing the specific value at the
* tail end of that path. Note that this copies and flattens prototype
* properties onto the new object as well. All non-primitive properties
* are copied by reference.
*
* @func
* @memberOf R
* @category Object
* @sig [String] -> a -> {k: v} -> {k: v}
* @param {Array} path the path to set
* @param {*} val the new value
* @param {Object} obj the object to clone
* @return {Object} a new object similar to the original except along the specified path.
* @example
*
* R.assocPath(['a', 'b', 'c'], 42, {a: {b: {c: 0}}}); //=> {a: {b: {c: 42}}}
*/
var assocPath = _curry3(_assocPath);
/**
* Wraps a function of any arity (including nullary) in a function that accepts exactly 2
* parameters. Any extraneous parameters will not be passed to the supplied function.
*
* @func
* @memberOf R
* @category Function
* @sig (* -> c) -> (a, b -> c)
* @param {Function} fn The function to wrap.
* @return {Function} A new function wrapping `fn`. The new function is guaranteed to be of
* arity 2.
* @example
*
* var takesThreeArgs = function(a, b, c) {
* return [a, b, c];
* };
* takesThreeArgs.length; //=> 3
* takesThreeArgs(1, 2, 3); //=> [1, 2, 3]
*
* var takesTwoArgs = R.binary(takesThreeArgs);
* takesTwoArgs.length; //=> 2
* // Only 2 arguments are passed to the wrapped function
* takesTwoArgs(1, 2, 3); //=> [1, 2, undefined]
*/
var binary = _curry1(function binary(fn) {
return nAry(2, fn);
});
/**
* Creates a deep copy of the value which may contain (nested) `Array`s and
* `Object`s, `Number`s, `String`s, `Boolean`s and `Date`s. `Function`s are
* not copied, but assigned by their reference.
*
* @func
* @memberOf R
* @category Object
* @sig {*} -> {*}
* @param {*} value The object or array to clone
* @return {*} A new object or array.
* @example
*
* var objects = [{}, {}, {}];
* var objectsClone = R.clone(objects);
* objects[0] === objectsClone[0]; //=> false
*/
var clone = _curry1(function clone(value) {
return _baseCopy(value, [], []);
});
/**
* Creates a new function that runs each of the functions supplied as parameters in turn,
* passing the return value of each function invocation to the next function invocation,
* beginning with whatever arguments were passed to the initial invocation.
*
* Note that `compose` is a right-associative function, which means the functions provided
* will be invoked in order from right to left. In the example `var h = compose(f, g)`,
* the function `h` is equivalent to `f( g(x) )`, where `x` represents the arguments
* originally passed to `h`.
*
* @func
* @memberOf R
* @category Function
* @sig ((y -> z), (x -> y), ..., (b -> c), (a... -> b)) -> (a... -> z)
* @param {...Function} functions A variable number of functions.
* @return {Function} A new function which represents the result of calling each of the
* input `functions`, passing the result of each function call to the next, from
* right to left.
* @example
*
* var triple = function(x) { return x * 3; };
* var double = function(x) { return x * 2; };
* var square = function(x) { return x * x; };
* var squareThenDoubleThenTriple = R.compose(triple, double, square);
*
* //≅ triple(double(square(5)))
* squareThenDoubleThenTriple(5); //=> 150
*/
var compose = _createComposer(_compose);
/**
* Creates a new lens that allows getting and setting values of nested properties, by
* following each given lens in succession.
*
* Note that `composeL` is a right-associative function, which means the lenses provided
* will be invoked in order from right to left.
*
* @func
* @memberOf R
* @category Function
* @see R.lens
* @sig ((y -> z), (x -> y), ..., (b -> c), (a -> b)) -> (a -> z)
* @param {...Function} lenses A variable number of lenses.
* @return {Function} A new lens which represents the result of calling each of the
* input `lenses`, passing the result of each getter/setter as the source
* to the next, from right to left.
* @example
*
* var headLens = R.lensIndex(0);
* var secondLens = R.lensIndex(1);
* var xLens = R.lensProp('x');
* var secondOfXOfHeadLens = R.composeL(secondLens, xLens, headLens);
*
* var source = [{x: [0, 1], y: [2, 3]}, {x: [4, 5], y: [6, 7]}];
* secondOfXOfHeadLens(source); //=> 1
* secondOfXOfHeadLens.set(123, source); //=> [{x: [0, 123], y: [2, 3]}, {x: [4, 5], y: [6, 7]}]
*/
var composeL = function () {
var fn = arguments[arguments.length - 1];
var idx = arguments.length - 2;
while (idx >= 0) {
fn = _composeL(arguments[idx], fn);
idx -= 1;
}
return fn;
};
/**
* Similar to `compose` but with automatic handling of promises (or, more
* precisely, "thenables"). The behavior is identical to that of
* compose() if all composed functions return something other than
* promises (i.e., objects with a .then() method). If one of the function
* returns a promise, however, then the next function in the composition
* is called asynchronously, in the success callback of the promise, using
* the resolved value as an input. Note that `composeP` is a right-
* associative function, just like `compose`.
*
* @func
* @memberOf R
* @category Function
* @sig ((y -> z), (x -> y), ..., (b -> c), (a... -> b)) -> (a... -> z)
* @param {...Function} functions A variable number of functions.
* @return {Function} A new function which represents the result of calling each of the
* input `functions`, passing either the returned result or the asynchronously
* resolved value) of each function call to the next, from right to left.
* @example
*
* var Q = require('q');
* var triple = function(x) { return x * 3; };
* var double = function(x) { return x * 2; };
* var squareAsync = function(x) { return Q.when(x * x); };
* var squareAsyncThenDoubleThenTriple = R.composeP(triple, double, squareAsync);
*
* //≅ squareAsync(5).then(function(x) { return triple(double(x)) };
* squareAsyncThenDoubleThenTriple(5)
* .then(function(result) {
* // result is 150
* });
*/
var composeP = _createComposer(_composeP);
/**
* Returns a new list consisting of the elements of the first list followed by the elements
* of the second.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [a] -> [a]
* @param {Array} list1 The first list to merge.
* @param {Array} list2 The second set to merge.
* @return {Array} A new array consisting of the contents of `list1` followed by the
* contents of `list2`. If, instead of an Array for `list1`, you pass an
* object with a `concat` method on it, `concat` will call `list1.concat`
* and pass it the value of `list2`.
*
* @example
*
* R.concat([], []); //=> []
* R.concat([4, 5, 6], [1, 2, 3]); //=> [4, 5, 6, 1, 2, 3]
* R.concat('ABC', 'DEF'); // 'ABCDEF'
*/
var concat = _curry2(function (set1, set2) {
if (_isArray(set2)) {
return _concat(set1, set2);
} else if (_hasMethod('concat', set1)) {
return set1.concat(set2);
} else {
throw new TypeError('can\'t concat ' + typeof set1);
}
});
/**
* Returns a curried equivalent of the provided function, with the
* specified arity. The curried function has two unusual capabilities.
* First, its arguments needn't be provided one at a time. If `g` is
* `R.curryN(3, f)`, the following are equivalent:
*
* - `g(1)(2)(3)`
* - `g(1)(2, 3)`
* - `g(1, 2)(3)`
* - `g(1, 2, 3)`
*
* Secondly, the special placeholder value `R.__` may be used to specify
* "gaps", allowing partial application of any combination of arguments,
* regardless of their positions. If `g` is as above and `_` is `R.__`,
* the following are equivalent:
*
* - `g(1, 2, 3)`
* - `g(_, 2, 3)(1)`
* - `g(_, _, 3)(1)(2)`
* - `g(_, _, 3)(1, 2)`
* - `g(_, 2)(1)(3)`
* - `g(_, 2)(1, 3)`
* - `g(_, 2)(_, 3)(1)`
*
* @func
* @memberOf R
* @category Function
* @sig Number -> (* -> a) -> (* -> a)
* @param {Number} length The arity for the returned function.
* @param {Function} fn The function to curry.
* @return {Function} A new, curried function.
* @see R.curry
* @example
*
* var addFourNumbers = function() {
* return R.sum([].slice.call(arguments, 0, 4));
* };
*
* var curriedAddFourNumbers = R.curryN(4, addFourNumbers);
* var f = curriedAddFourNumbers(1, 2);
* var g = f(3);
* g(4); //=> 10
*/
var curryN = _curry2(function curryN(length, fn) {
return arity(length, _curryN(length, [], fn));
});
/**
* Makes a shallow clone of an object, omitting the property at the
* given path. Note that this copies and flattens prototype properties
* onto the new object as well. All non-primitive properties are copied
* by reference.
*
* @func
* @memberOf R
* @category Object
* @sig [String] -> {k: v} -> {k: v}
* @param {Array} path the path to set
* @param {Object} obj the object to clone
* @return {Object} a new object without the property at path
* @example
*
* R.dissocPath(['a', 'b', 'c'], {a: {b: {c: 42}}}); //=> {a: {b: {}}}
*/
var dissocPath = _curry2(_dissocPath);
/**
* Returns a new list containing the last `n` elements of a given list, passing each value
* to the supplied predicate function, skipping elements while the predicate function returns
* `true`. The predicate function is passed one argument: *(value)*.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> [a]
* @param {Function} fn The function called per iteration.
* @param {Array} list The collection to iterate over.
* @return {Array} A new array.
* @example
*
* var lteTwo = function(x) {
* return x <= 2;
* };
*
* R.dropWhile(lteTwo, [1, 2, 3, 4, 3, 2, 1]); //=> [3, 4, 3, 2, 1]
*/
var dropWhile = _curry2(_dispatchable('dropWhile', _xdropWhile, function dropWhile(pred, list) {
var idx = 0, len = list.length;
while (idx < len && pred(list[idx])) {
idx += 1;
}
return _slice(list, idx);
}));
/**
* `empty` returns an empty list for any argument, except when the argument satisfies the
* Fantasy-land Monoid spec. In that case, this function will return the result of invoking
* `empty` on that Monoid.
*
* @func
* @memberOf R
* @category Function
* @sig * -> []
* @return {Array} An empty array.
* @example
*
* R.empty([1,2,3,4,5]); //=> []
*/
var empty = _curry1(function empty(x) {
return _hasMethod('empty', x) ? x.empty() : [];
});
/**
* Returns `true` if its arguments are equivalent, `false` otherwise.
* Dispatches to an `equals` method if present. Handles cyclical data
* structures.
*
* @func
* @memberOf R
* @category Relation
* @sig a -> b -> Boolean
* @param {*} a
* @param {*} b
* @return {Boolean}
* @example
*
* R.equals(1, 1); //=> true
* R.equals(1, '1'); //=> false
* R.equals([1, 2, 3], [1, 2, 3]); //=> true
*
* var a = {}; a.v = a;
* var b = {}; b.v = b;
* R.equals(a, b); //=> true
*/
var equals = _curry2(function equals(a, b) {
return _hasMethod('equals', a) ? a.equals(b) : _hasMethod('equals', b) ? b.equals(a) : _equals(a, b, [], []);
});
/**
* Returns a new list containing only those items that match a given predicate function.
* The predicate function is passed one argument: *(value)*.
*
* Note that `R.filter` does not skip deleted or unassigned indices, unlike the native
* `Array.prototype.filter` method. For more details on this behavior, see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter#Description
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> [a]
* @param {Function} fn The function called per iteration.
* @param {Array} list The collection to iterate over.
* @return {Array} The new filtered array.
* @example
*
* var isEven = function(n) {
* return n % 2 === 0;
* };
* R.filter(isEven, [1, 2, 3, 4]); //=> [2, 4]
*/
var filter = _curry2(_dispatchable('filter', _xfilter, _filter));
/**
* Returns the first element of the list which matches the predicate, or `undefined` if no
* element matches.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> a | undefined
* @param {Function} fn The predicate function used to determine if the element is the
* desired one.
* @param {Array} list The array to consider.
* @return {Object} The element found, or `undefined`.
* @example
*
* var xs = [{a: 1}, {a: 2}, {a: 3}];
* R.find(R.propEq('a', 2))(xs); //=> {a: 2}
* R.find(R.propEq('a', 4))(xs); //=> undefined
*/
var find = _curry2(_dispatchable('find', _xfind, function find(fn, list) {
var idx = 0;
var len = list.length;
while (idx < len) {
if (fn(list[idx])) {
return list[idx];
}
idx += 1;
}
}));
/**
* Returns the index of the first element of the list which matches the predicate, or `-1`
* if no element matches.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> Number
* @param {Function} fn The predicate function used to determine if the element is the
* desired one.
* @param {Array} list The array to consider.
* @return {Number} The index of the element found, or `-1`.
* @example
*
* var xs = [{a: 1}, {a: 2}, {a: 3}];
* R.findIndex(R.propEq('a', 2))(xs); //=> 1
* R.findIndex(R.propEq('a', 4))(xs); //=> -1
*/
var findIndex = _curry2(_dispatchable('findIndex', _xfindIndex, function findIndex(fn, list) {
var idx = 0;
var len = list.length;
while (idx < len) {
if (fn(list[idx])) {
return idx;
}
idx += 1;
}
return -1;
}));
/**
* Returns the last element of the list which matches the predicate, or `undefined` if no
* element matches.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> a | undefined
* @param {Function} fn The predicate function used to determine if the element is the
* desired one.
* @param {Array} list The array to consider.
* @return {Object} The element found, or `undefined`.
* @example
*
* var xs = [{a: 1, b: 0}, {a:1, b: 1}];
* R.findLast(R.propEq('a', 1))(xs); //=> {a: 1, b: 1}
* R.findLast(R.propEq('a', 4))(xs); //=> undefined
*/
var findLast = _curry2(_dispatchable('findLast', _xfindLast, function findLast(fn, list) {
var idx = list.length - 1;
while (idx >= 0) {
if (fn(list[idx])) {
return list[idx];
}
idx -= 1;
}
}));
/**
* Returns the index of the last element of the list which matches the predicate, or
* `-1` if no element matches.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> Number
* @param {Function} fn The predicate function used to determine if the element is the
* desired one.
* @param {Array} list The array to consider.
* @return {Number} The index of the element found, or `-1`.
* @example
*
* var xs = [{a: 1, b: 0}, {a:1, b: 1}];
* R.findLastIndex(R.propEq('a', 1))(xs); //=> 1
* R.findLastIndex(R.propEq('a', 4))(xs); //=> -1
*/
var findLastIndex = _curry2(_dispatchable('findLastIndex', _xfindLastIndex, function findLastIndex(fn, list) {
var idx = list.length - 1;
while (idx >= 0) {
if (fn(list[idx])) {
return idx;
}
idx -= 1;
}
return -1;
}));
/**
* Returns a new list by pulling every item out of it (and all its sub-arrays) and putting
* them in a new array, depth-first.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [b]
* @param {Array} list The array to consider.
* @return {Array} The flattened list.
* @example
*
* R.flatten([1, 2, [3, 4], 5, [6, [7, 8, [9, [10, 11], 12]]]]);
* //=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
*/
var flatten = _curry1(_makeFlat(true));
/**
* Iterate over an input `list`, calling a provided function `fn` for each element in the
* list.
*
* `fn` receives one argument: *(value)*.
*
* Note: `R.forEach` does not skip deleted or unassigned indices (sparse arrays), unlike
* the native `Array.prototype.forEach` method. For more details on this behavior, see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach#Description
*
* Also note that, unlike `Array.prototype.forEach`, Ramda's `forEach` returns the original
* array. In some libraries this function is named `each`.
*
* @func
* @memberOf R
* @category List
* @sig (a -> *) -> [a] -> [a]
* @param {Function} fn The function to invoke. Receives one argument, `value`.
* @param {Array} list The list to iterate over.
* @return {Array} The original list.
* @example
*
* var printXPlusFive = function(x) { console.log(x + 5); };
* R.forEach(printXPlusFive, [1, 2, 3]); //=> [1, 2, 3]
* //-> 6
* //-> 7
* //-> 8
*/
var forEach = _curry2(function forEach(fn, list) {
return _hasMethod('forEach', list) ? list.forEach(fn) : _forEach(fn, list);
});
/**
* Returns a list of function names of object's own functions
*
* @func
* @memberOf R
* @category Object
* @sig {*} -> [String]
* @param {Object} obj The objects with functions in it
* @return {Array} A list of the object's own properties that map to functions.
* @example
*
* R.functions(R); // returns list of ramda's own function names
*
* var F = function() { this.x = function(){}; this.y = 1; }
* F.prototype.z = function() {};
* F.prototype.a = 100;
* R.functions(new F()); //=> ["x"]
*/
var functions = _curry1(_functionsWith(keys));
/**
* Returns a list of function names of object's own and prototype functions
*
* @func
* @memberOf R
* @category Object
* @sig {*} -> [String]
* @param {Object} obj The objects with functions in it
* @return {Array} A list of the object's own properties and prototype
* properties that map to functions.
* @example
*
* R.functionsIn(R); // returns list of ramda's own and prototype function names
*
* var F = function() { this.x = function(){}; this.y = 1; }
* F.prototype.z = function() {};
* F.prototype.a = 100;
* R.functionsIn(new F()); //=> ["x", "z"]
*/
var functionsIn = _curry1(_functionsWith(keysIn));
/**
* Splits a list into sub-lists stored in an object, based on the result of calling a String-returning function
* on each element, and grouping the results according to values returned.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> String) -> [a] -> {String: [a]}
* @param {Function} fn Function :: a -> String
* @param {Array} list The array to group
* @return {Object} An object with the output of `fn` for keys, mapped to arrays of elements
* that produced that key when passed to `fn`.
* @example
*
* var byGrade = R.groupBy(function(student) {
* var score = student.score;
* return score < 65 ? 'F' :
* score < 70 ? 'D' :
* score < 80 ? 'C' :
* score < 90 ? 'B' : 'A';
* });
* var students = [{name: 'Abby', score: 84},
* {name: 'Eddy', score: 58},
* // ...
* {name: 'Jack', score: 69}];
* byGrade(students);
* // {
* // 'A': [{name: 'Dianne', score: 99}],
* // 'B': [{name: 'Abby', score: 84}]
* // // ...,
* // 'F': [{name: 'Eddy', score: 58}]
* // }
*/
var groupBy = _curry2(_dispatchable('groupBy', _xgroupBy, function groupBy(fn, list) {
return _reduce(function (acc, elt) {
var key = fn(elt);
acc[key] = _append(elt, acc[key] || (acc[key] = []));
return acc;
}, {}, list);
}));
/**
* Returns the first element in a list.
* In some libraries this function is named `first`.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> a
* @param {Array} list The array to consider.
* @return {*} The first element of the list, or `undefined` if the list is empty.
* @example
*
* R.head(['fi', 'fo', 'fum']); //=> 'fi'
*/
var head = nth(0);
/**
* Creates a function that will process either the `onTrue` or the `onFalse` function depending
* upon the result of the `condition` predicate.
*
* @func
* @memberOf R
* @category Logic
* @sig (*... -> Boolean) -> (*... -> *) -> (*... -> *) -> (*... -> *)
* @param {Function} condition A predicate function
* @param {Function} onTrue A function to invoke when the `condition` evaluates to a truthy value.
* @param {Function} onFalse A function to invoke when the `condition` evaluates to a falsy value.
* @return {Function} A new unary function that will process either the `onTrue` or the `onFalse`
* function depending upon the result of the `condition` predicate.
* @example
*
* // Flatten all arrays in the list but leave other values alone.
* var flattenArrays = R.map(R.ifElse(Array.isArray, R.flatten, R.identity));
*
* flattenArrays([[0], [[10], [8]], 1234, {}]); //=> [[0], [10, 8], 1234, {}]
* flattenArrays([[[10], 123], [8, [10]], "hello"]); //=> [[10, 123], [8, 10], "hello"]
*/
var ifElse = _curry3(function ifElse(condition, onTrue, onFalse) {
return curryN(Math.max(condition.length, onTrue.length, onFalse.length), function _ifElse() {
return condition.apply(this, arguments) ? onTrue.apply(this, arguments) : onFalse.apply(this, arguments);
});
});
/**
* Inserts the supplied element into the list, at index `index`. _Note
* that this is not destructive_: it returns a copy of the list with the changes.
* <small>No lists have been harmed in the application of this function.</small>
*
* @func
* @memberOf R
* @category List
* @sig Number -> a -> [a] -> [a]
* @param {Number} index The position to insert the element
* @param {*} elt The element to insert into the Array
* @param {Array} list The list to insert into
* @return {Array} A new Array with `elt` inserted at `index`.
* @example
*
* R.insert(2, 'x', [1,2,3,4]); //=> [1,2,'x',3,4]
*/
var insert = _curry3(function insert(idx, elt, list) {
idx = idx < list.length && idx >= 0 ? idx : list.length;
return _concat(_append(elt, _slice(list, 0, idx)), _slice(list, idx));
});
/**
* Combines two lists into a set (i.e. no duplicates) composed of those
* elements common to both lists. Duplication is determined according
* to the value returned by applying the supplied predicate to two list
* elements.
*
* @func
* @memberOf R
* @category Relation
* @sig (a,a -> Boolean) -> [a] -> [a] -> [a]
* @param {Function} pred A predicate function that determines whether
* the two supplied elements are equal.
* @param {Array} list1 One list of items to compare
* @param {Array} list2 A second list of items to compare
* @see R.intersection
* @return {Array} A new list containing those elements common to both lists.
* @example
*
* var buffaloSpringfield = [
* {id: 824, name: 'Richie Furay'},
* {id: 956, name: 'Dewey Martin'},
* {id: 313, name: 'Bruce Palmer'},
* {id: 456, name: 'Stephen Stills'},
* {id: 177, name: 'Neil Young'}
* ];
* var csny = [
* {id: 204, name: 'David Crosby'},
* {id: 456, name: 'Stephen Stills'},
* {id: 539, name: 'Graham Nash'},
* {id: 177, name: 'Neil Young'}
* ];
*
* var sameId = function(o1, o2) {return o1.id === o2.id;};
*
* R.intersectionWith(sameId, buffaloSpringfield, csny);
* //=> [{id: 456, name: 'Stephen Stills'}, {id: 177, name: 'Neil Young'}]
*/
var intersectionWith = _curry3(function intersectionWith(pred, list1, list2) {
var results = [], idx = 0;
while (idx < list1.length) {
if (_containsWith(pred, list1[idx], list2)) {
results[results.length] = list1[idx];
}
idx += 1;
}
return uniqWith(pred, results);
});
/**
* Creates a new list with the separator interposed between elements.
*
* @func
* @memberOf R
* @category List
* @sig a -> [a] -> [a]
* @param {*} separator The element to add to the list.
* @param {Array} list The list to be interposed.
* @return {Array} The new list.
* @example
*
* R.intersperse('n', ['ba', 'a', 'a']); //=> ['ba', 'n', 'a', 'n', 'a']
*/
var intersperse = _curry2(_checkForMethod('intersperse', function intersperse(separator, list) {
var out = [];
var idx = 0;
var length = list.length;
while (idx < length) {
if (idx === length - 1) {
out.push(list[idx]);
} else {
out.push(list[idx], separator);
}
idx += 1;
}
return out;
}));
/**
* Same as R.invertObj, however this accounts for objects
* with duplicate values by putting the values into an
* array.
*
* @func
* @memberOf R
* @category Object
* @sig {s: x} -> {x: [ s, ... ]}
* @param {Object} obj The object or array to invert
* @return {Object} out A new object with keys
* in an array.
* @example
*
* var raceResultsByFirstName = {
* first: 'alice',
* second: 'jake',
* third: 'alice',
* };
* R.invert(raceResultsByFirstName);
* //=> { 'alice': ['first', 'third'], 'jake':['second'] }
*/
var invert = _curry1(function invert(obj) {
var props = keys(obj);
var len = props.length;
var idx = 0;
var out = {};
while (idx < len) {
var key = props[idx];
var val = obj[key];
var list = _has(val, out) ? out[val] : out[val] = [];
list[list.length] = key;
idx += 1;
}
return out;
});
/**
* Returns a new object with the keys of the given object
* as values, and the values of the given object as keys.
*
* @func
* @memberOf R
* @category Object
* @sig {s: x} -> {x: s}
* @param {Object} obj The object or array to invert
* @return {Object} out A new object
* @example
*
* var raceResults = {
* first: 'alice',
* second: 'jake'
* };
* R.invertObj(raceResults);
* //=> { 'alice': 'first', 'jake':'second' }
*
* // Alternatively:
* var raceResults = ['alice', 'jake'];
* R.invertObj(raceResults);
* //=> { 'alice': '0', 'jake':'1' }
*/
var invertObj = _curry1(function invertObj(obj) {
var props = keys(obj);
var len = props.length;
var idx = 0;
var out = {};
while (idx < len) {
var key = props[idx];
out[obj[key]] = key;
idx += 1;
}
return out;
});
/**
* Turns a named method with a specified arity into a function
* that can be called directly supplied with arguments and a target object.
*
* The returned function is curried and accepts `arity + 1` parameters where
* the final parameter is the target object.
*
* @func
* @memberOf R
* @category Function
* @sig Number -> String -> (a -> b -> ... -> n -> Object -> *)
* @param {Number} arity Number of arguments the returned function should take
* before the target object.
* @param {Function} method Name of the method to call.
* @return {Function} A new curried function.
* @example
*
* var sliceFrom = R.invoker(1, 'slice');
* sliceFrom(6, 'abcdefghijklm'); //=> 'ghijklm'
* var sliceFrom6 = R.invoker(2, 'slice')(6);
* sliceFrom6(8, 'abcdefghijklm'); //=> 'gh'
*/
var invoker = _curry2(function invoker(arity, method) {
return curryN(arity + 1, function () {
var target = arguments[arity];
return target[method].apply(target, _slice(arguments, 0, arity));
});
});
/**
* Returns a string made by inserting the `separator` between each
* element and concatenating all the elements into a single string.
*
* @func
* @memberOf R
* @category List
* @sig String -> [a] -> String
* @param {Number|String} separator The string used to separate the elements.
* @param {Array} xs The elements to join into a string.
* @return {String} str The string made by concatenating `xs` with `separator`.
* @example
*
* var spacer = R.join(' ');
* spacer(['a', 2, 3.4]); //=> 'a 2 3.4'
* R.join('|', [1, 2, 3]); //=> '1|2|3'
*/
var join = invoker(1, 'join');
/**
* Returns the last element from a list.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> a
* @param {Array} list The array to consider.
* @return {*} The last element of the list, or `undefined` if the list is empty.
* @example
*
* R.last(['fi', 'fo', 'fum']); //=> 'fum'
*/
var last = nth(-1);
/**
* Creates a lens that will focus on index `n` of the source array.
*
* @func
* @memberOf R
* @category List
* @see R.lens
* @sig Number -> (a -> b)
* @param {Number} n The index of the array that the returned lens will focus on.
* @return {Function} the returned function has `set` and `map` properties that are
* also curried functions.
* @example
*
* var headLens = R.lensIndex(0);
* headLens([10, 20, 30, 40]); //=> 10
* headLens.set('mu', [10, 20, 30, 40]); //=> ['mu', 20, 30, 40]
* headLens.map(function(x) { return x + 1; }, [10, 20, 30, 40]); //=> [11, 20, 30, 40]
*/
var lensIndex = _curry1(function lensIndex(n) {
return lens(nth(n), update(n));
});
/**
* Creates a lens that will focus on property `k` of the source object.
*
* @func
* @memberOf R
* @category Object
* @see R.lens
* @sig String -> (a -> b)
* @param {String} k A string that represents a property to focus on.
* @return {Function} the returned function has `set` and `map` properties that are
* also curried functions.
* @example
*
* var phraseLens = R.lensProp('phrase');
* var obj1 = { phrase: 'Absolute filth . . . and I LOVED it!'};
* var obj2 = { phrase: "What's all this, then?"};
* phraseLens(obj1); // => 'Absolute filth . . . and I LOVED it!'
* phraseLens(obj2); // => "What's all this, then?"
* phraseLens.set('Ooh Betty', obj1); //=> { phrase: 'Ooh Betty'}
* phraseLens.map(R.toUpper, obj2); //=> { phrase: "WHAT'S ALL THIS, THEN?"}
*/
var lensProp = _curry1(function lensProp(k) {
return lens(prop(k), assoc(k));
});
/**
* Returns a new list, constructed by applying the supplied function to every element of the
* supplied list.
*
* Note: `R.map` does not skip deleted or unassigned indices (sparse arrays), unlike the
* native `Array.prototype.map` method. For more details on this behavior, see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map#Description
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> b) -> [a] -> [b]
* @param {Function} fn The function to be called on every element of the input `list`.
* @param {Array} list The list to be iterated over.
* @return {Array} The new list.
* @example
*
* var double = function(x) {
* return x * 2;
* };
*
* R.map(double, [1, 2, 3]); //=> [2, 4, 6]
*/
var map = _curry2(_dispatchable('map', _xmap, _map));
/**
* Map, but for objects. Creates an object with the same keys as `obj` and values
* generated by running each property of `obj` through `fn`. `fn` is passed one argument:
* *(value)*.
*
* @func
* @memberOf R
* @category Object
* @sig (v -> v) -> {k: v} -> {k: v}
* @param {Function} fn A function called for each property in `obj`. Its return value will
* become a new property on the return object.
* @param {Object} obj The object to iterate over.
* @return {Object} A new object with the same keys as `obj` and values that are the result
* of running each property through `fn`.
* @example
*
* var values = { x: 1, y: 2, z: 3 };
* var double = function(num) {
* return num * 2;
* };
*
* R.mapObj(double, values); //=> { x: 2, y: 4, z: 6 }
*/
var mapObj = _curry2(function mapObject(fn, obj) {
return _reduce(function (acc, key) {
acc[key] = fn(obj[key]);
return acc;
}, {}, keys(obj));
});
/**
* Like `mapObj`, but but passes additional arguments to the predicate function. The
* predicate function is passed three arguments: *(value, key, obj)*.
*
* @func
* @memberOf R
* @category Object
* @sig (v, k, {k: v} -> v) -> {k: v} -> {k: v}
* @param {Function} fn A function called for each property in `obj`. Its return value will
* become a new property on the return object.
* @param {Object} obj The object to iterate over.
* @return {Object} A new object with the same keys as `obj` and values that are the result
* of running each property through `fn`.
* @example
*
* var values = { x: 1, y: 2, z: 3 };
* var prependKeyAndDouble = function(num, key, obj) {
* return key + (num * 2);
* };
*
* R.mapObjIndexed(prependKeyAndDouble, values); //=> { x: 'x2', y: 'y4', z: 'z6' }
*/
var mapObjIndexed = _curry2(function mapObjectIndexed(fn, obj) {
return _reduce(function (acc, key) {
acc[key] = fn(obj[key], key, obj);
return acc;
}, {}, keys(obj));
});
/**
* Tests a regular expression against a String
*
* @func
* @memberOf R
* @category String
* @sig RegExp -> String -> [String] | null
* @param {RegExp} rx A regular expression.
* @param {String} str The string to match against
* @return {Array} The list of matches, or null if no matches found.
* @see R.invoker
* @example
*
* R.match(/([a-z]a)/g, 'bananas'); //=> ['ba', 'na', 'na']
*/
var match = invoker(1, 'match');
/**
* Determines the largest of a list of numbers (or elements that can be cast to numbers)
*
* @func
* @memberOf R
* @category Math
* @sig [Number] -> Number
* @see R.maxBy
* @param {Array} list A list of numbers
* @return {Number} The greatest number in the list.
* @example
*
* R.max([7, 3, 9, 2, 4, 9, 3]); //=> 9
*/
var max = _createMaxMin(_gt, -Infinity);
/**
* Create a new object with the own properties of `a`
* merged with the own properties of object `b`.
* This function will *not* mutate passed-in objects.
*
* @func
* @memberOf R
* @category Object
* @sig {k: v} -> {k: v} -> {k: v}
* @param {Object} a source object
* @param {Object} b object with higher precedence in output
* @return {Object} The destination object.
* @example
*
* R.merge({ 'name': 'fred', 'age': 10 }, { 'age': 40 });
* //=> { 'name': 'fred', 'age': 40 }
*
* var resetToDefault = R.merge(R.__, {x: 0});
* resetToDefault({x: 5, y: 2}); //=> {x: 0, y: 2}
*/
var merge = _curry2(function merge(a, b) {
return _extend(_extend({}, a), b);
});
/**
* Determines the smallest of a list of numbers (or elements that can be cast to numbers)
*
* @func
* @memberOf R
* @category Math
* @sig [Number] -> Number
* @param {Array} list A list of numbers
* @return {Number} The greatest number in the list.
* @see R.minBy
* @example
*
* R.min([7, 3, 9, 2, 4, 9, 3]); //=> 2
*/
var min = _createMaxMin(_lt, Infinity);
/**
* Returns `true` if no elements of the list match the predicate,
* `false` otherwise.
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> Boolean
* @param {Function} fn The predicate function.
* @param {Array} list The array to consider.
* @return {Boolean} `true` if the predicate is not satisfied by every element, `false` otherwise.
* @example
*
* R.none(R.isNaN, [1, 2, 3]); //=> true
* R.none(R.isNaN, [1, 2, 3, NaN]); //=> false
*/
var none = _curry2(_complement(_dispatchable('any', _xany, _any)));
/**
* A function that returns the first truthy of two arguments otherwise the
* last argument. Note that this is NOT short-circuited, meaning that if
* expressions are passed they are both evaluated.
*
* Dispatches to the `or` method of the first argument if applicable.
*
* @func
* @memberOf R
* @category Logic
* @sig * -> * -> *
* @param {*} a any value
* @param {*} b any other value
* @return {*} the first truthy argument, otherwise the last argument.
* @example
*
* R.or(false, true); //=> true
* R.or(0, []); //=> []
* R.or(null, ''); => ''
*/
var or = _curry2(function or(a, b) {
return _hasMethod('or', a) ? a.or(b) : a || b;
});
/**
* Takes a predicate and a list and returns the pair of lists of
* elements which do and do not satisfy the predicate, respectively.
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> [[a],[a]]
* @param {Function} pred A predicate to determine which array the element belongs to.
* @param {Array} list The array to partition.
* @return {Array} A nested array, containing first an array of elements that satisfied the predicate,
* and second an array of elements that did not satisfy.
* @example
*
* R.partition(R.contains('s'), ['sss', 'ttt', 'foo', 'bars']);
* //=> [ [ 'sss', 'bars' ], [ 'ttt', 'foo' ] ]
*/
var partition = _curry2(function partition(pred, list) {
return _reduce(function (acc, elt) {
var xs = acc[pred(elt) ? 0 : 1];
xs[xs.length] = elt;
return acc;
}, [
[],
[]
], list);
});
/**
* Determines whether a nested path on an object has a specific value,
* in `R.equals` terms. Most likely used to filter a list.
*
* @func
* @memberOf R
* @category Relation
* @sig [String] -> * -> {String: *} -> Boolean
* @param {Array} path The path of the nested property to use
* @param {*} val The value to compare the nested property with
* @param {Object} obj The object to check the nested property in
* @return {Boolean} `true` if the value equals the nested object property,
* `false` otherwise.
* @example
*
* var user1 = { address: { zipCode: 90210 } };
* var user2 = { address: { zipCode: 55555 } };
* var user3 = { name: 'Bob' };
* var users = [ user1, user2, user3 ];
* var isFamous = R.pathEq(['address', 'zipCode'], 90210);
* R.filter(isFamous, users); //=> [ user1 ]
*/
var pathEq = _curry3(function pathEq(path, val, obj) {
return equals(_path(path, obj), val);
});
/**
* Creates a new function that runs each of the functions supplied as parameters in turn,
* passing the return value of each function invocation to the next function invocation,
* beginning with whatever arguments were passed to the initial invocation.
*
* `pipe` is the mirror version of `compose`. `pipe` is left-associative, which means that
* each of the functions provided is executed in order from left to right.
*
* In some libraries this function is named `sequence`.
* @func
* @memberOf R
* @category Function
* @sig ((a... -> b), (b -> c), ..., (x -> y), (y -> z)) -> (a... -> z)
* @param {...Function} functions A variable number of functions.
* @return {Function} A new function which represents the result of calling each of the
* input `functions`, passing the result of each function call to the next, from
* left to right.
* @example
*
* var triple = function(x) { return x * 3; };
* var double = function(x) { return x * 2; };
* var square = function(x) { return x * x; };
* var squareThenDoubleThenTriple = R.pipe(square, double, triple);
*
* //≅ triple(double(square(5)))
* squareThenDoubleThenTriple(5); //=> 150
*/
var pipe = function pipe() {
return compose.apply(this, reverse(arguments));
};
/**
* Creates a new lens that allows getting and setting values of nested properties, by
* following each given lens in succession.
*
* `pipeL` is the mirror version of `composeL`. `pipeL` is left-associative, which means that
* each of the functions provided is executed in order from left to right.
*
* @func
* @memberOf R
* @category Function
* @see R.lens
* @sig ((a -> b), (b -> c), ..., (x -> y), (y -> z)) -> (a -> z)
* @param {...Function} lenses A variable number of lenses.
* @return {Function} A new lens which represents the result of calling each of the
* input `lenses`, passing the result of each getter/setter as the source
* to the next, from right to left.
* @example
*
* var headLens = R.lensIndex(0);
* var secondLens = R.lensIndex(1);
* var xLens = R.lensProp('x');
* var headThenXThenSecondLens = R.pipeL(headLens, xLens, secondLens);
*
* var source = [{x: [0, 1], y: [2, 3]}, {x: [4, 5], y: [6, 7]}];
* headThenXThenSecondLens(source); //=> 1
* headThenXThenSecondLens.set(123, source); //=> [{x: [0, 123], y: [2, 3]}, {x: [4, 5], y: [6, 7]}]
*/
var pipeL = compose(apply(composeL), unapply(reverse));
/**
* Creates a new function that runs each of the functions supplied as parameters in turn,
* passing to the next function invocation either the value returned by the previous
* function or the resolved value if the returned value is a promise. In other words,
* if some of the functions in the sequence return promises, `pipeP` pipes the values
* asynchronously. If none of the functions return promises, the behavior is the same as
* that of `pipe`.
*
* `pipeP` is the mirror version of `composeP`. `pipeP` is left-associative, which means that
* each of the functions provided is executed in order from left to right.
*
* @func
* @memberOf R
* @category Function
* @sig ((a... -> b), (b -> c), ..., (x -> y), (y -> z)) -> (a... -> z)
* @param {...Function} functions A variable number of functions.
* @return {Function} A new function which represents the result of calling each of the
* input `functions`, passing either the returned result or the asynchronously
* resolved value) of each function call to the next, from left to right.
* @example
*
* var Q = require('q');
* var triple = function(x) { return x * 3; };
* var double = function(x) { return x * 2; };
* var squareAsync = function(x) { return Q.when(x * x); };
* var squareAsyncThenDoubleThenTriple = R.pipeP(squareAsync, double, triple);
*
* //≅ squareAsync(5).then(function(x) { return triple(double(x)) };
* squareAsyncThenDoubleThenTriple(5)
* .then(function(result) {
* // result is 150
* });
*/
var pipeP = function pipeP() {
return composeP.apply(this, reverse(arguments));
};
/**
* Determines whether the given property of an object has a specific value,
* in `R.equals` terms. Most likely used to filter a list.
*
* @func
* @memberOf R
* @category Relation
* @sig k -> v -> {k: v} -> Boolean
* @param {Number|String} name The property name (or index) to use.
* @param {*} val The value to compare the property with.
* @return {Boolean} `true` if the properties are equal, `false` otherwise.
* @example
*
* var abby = {name: 'Abby', age: 7, hair: 'blond'};
* var fred = {name: 'Fred', age: 12, hair: 'brown'};
* var rusty = {name: 'Rusty', age: 10, hair: 'brown'};
* var alois = {name: 'Alois', age: 15, disposition: 'surly'};
* var kids = [abby, fred, rusty, alois];
* var hasBrownHair = R.propEq('hair', 'brown');
* R.filter(hasBrownHair, kids); //=> [fred, rusty]
*/
var propEq = _curry3(function propEq(name, val, obj) {
return equals(obj[name], val);
});
/**
* Returns a single item by iterating through the list, successively calling the iterator
* function and passing it an accumulator value and the current value from the array, and
* then passing the result to the next call.
*
* The iterator function receives two values: *(acc, value)*. It may use `R.reduced` to
* shortcut the iteration.
*
* Note: `R.reduce` does not skip deleted or unassigned indices (sparse arrays), unlike
* the native `Array.prototype.reduce` method. For more details on this behavior, see:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce#Description
* @see R.reduced
*
* @func
* @memberOf R
* @category List
* @sig (a,b -> a) -> a -> [b] -> a
* @param {Function} fn The iterator function. Receives two values, the accumulator and the
* current element from the array.
* @param {*} acc The accumulator value.
* @param {Array} list The list to iterate over.
* @return {*} The final, accumulated value.
* @example
*
* var numbers = [1, 2, 3];
* var add = function(a, b) {
* return a + b;
* };
*
* R.reduce(add, 10, numbers); //=> 16
*/
var reduce = _curry3(_reduce);
/**
* Similar to `filter`, except that it keeps only values for which the given predicate
* function returns falsy. The predicate function is passed one argument: *(value)*.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> [a]
* @param {Function} fn The function called per iteration.
* @param {Array} list The collection to iterate over.
* @return {Array} The new filtered array.
* @example
*
* var isOdd = function(n) {
* return n % 2 === 1;
* };
* R.reject(isOdd, [1, 2, 3, 4]); //=> [2, 4]
*/
var reject = _curry2(function reject(fn, list) {
return filter(_complement(fn), list);
});
/**
* Returns a fixed list of size `n` containing a specified identical value.
*
* @func
* @memberOf R
* @category List
* @sig a -> n -> [a]
* @param {*} value The value to repeat.
* @param {Number} n The desired size of the output list.
* @return {Array} A new array containing `n` `value`s.
* @example
*
* R.repeat('hi', 5); //=> ['hi', 'hi', 'hi', 'hi', 'hi']
*
* var obj = {};
* var repeatedObjs = R.repeat(obj, 5); //=> [{}, {}, {}, {}, {}]
* repeatedObjs[0] === repeatedObjs[1]; //=> true
*/
var repeat = _curry2(function repeat(value, n) {
return times(always(value), n);
});
/**
* Returns a list containing the elements of `xs` from `fromIndex` (inclusive)
* to `toIndex` (exclusive).
*
* Dispatches to its third argument's `slice` method if present. As a
* result, one may replace `[a]` with `String` in the type signature.
*
* @func
* @memberOf R
* @category List
* @sig Number -> Number -> [a] -> [a]
* @param {Number} fromIndex The start index (inclusive).
* @param {Number} toIndex The end index (exclusive).
* @param {Array} xs The list to take elements from.
* @return {Array} The slice of `xs` from `fromIndex` to `toIndex`.
* @example
*
* R.slice(1, 3, ['a', 'b', 'c', 'd']); //=> ['b', 'c']
* R.slice(1, Infinity, ['a', 'b', 'c', 'd']); //=> ['b', 'c', 'd']
* R.slice(0, -1, ['a', 'b', 'c', 'd']); //=> ['a', 'b', 'c']
* R.slice(-3, -1, ['a', 'b', 'c', 'd']); //=> ['b', 'c']
* R.slice(0, 3, 'ramda'); //=> 'ram'
*/
var slice = _curry3(_checkForMethod('slice', function slice(fromIndex, toIndex, xs) {
return Array.prototype.slice.call(xs, fromIndex, toIndex);
}));
/**
* Splits a string into an array of strings based on the given
* separator.
*
* @func
* @memberOf R
* @category String
* @sig String -> String -> [String]
* @param {String} sep The separator string.
* @param {String} str The string to separate into an array.
* @return {Array} The array of strings from `str` separated by `str`.
* @example
*
* var pathComponents = R.split('/');
* R.tail(pathComponents('/usr/local/bin/node')); //=> ['usr', 'local', 'bin', 'node']
*
* R.split('.', 'a.b.c.xyz.d'); //=> ['a', 'b', 'c', 'xyz', 'd']
*/
var split = invoker(1, 'split');
/**
* Returns a string containing the characters of `str` from `fromIndex`
* (inclusive) to `toIndex` (exclusive).
*
* @func
* @memberOf R
* @category String
* @sig Number -> Number -> String -> String
* @param {Number} fromIndex The start index (inclusive).
* @param {Number} toIndex The end index (exclusive).
* @param {String} str The string to slice.
* @return {String}
* @see R.slice
* @deprecated since v0.15.0
* @example
*
* R.substring(2, 5, 'abcdefghijklm'); //=> 'cde'
*/
var substring = slice;
/**
* Returns a string containing the characters of `str` from `fromIndex`
* (inclusive) to the end of `str`.
*
* @func
* @memberOf R
* @category String
* @sig Number -> String -> String
* @param {Number} fromIndex
* @param {String} str
* @return {String}
* @deprecated since v0.15.0
* @example
*
* R.substringFrom(3, 'Ramda'); //=> 'da'
* R.substringFrom(-2, 'Ramda'); //=> 'da'
*/
var substringFrom = substring(__, Infinity);
/**
* Returns a string containing the first `toIndex` characters of `str`.
*
* @func
* @memberOf R
* @category String
* @sig Number -> String -> String
* @param {Number} toIndex
* @param {String} str
* @return {String}
* @deprecated since v0.15.0
* @example
*
* R.substringTo(3, 'Ramda'); //=> 'Ram'
* R.substringTo(-2, 'Ramda'); //=> 'Ram'
*/
var substringTo = substring(0);
/**
* Adds together all the elements of a list.
*
* @func
* @memberOf R
* @category Math
* @sig [Number] -> Number
* @param {Array} list An array of numbers
* @return {Number} The sum of all the numbers in the list.
* @see R.reduce
* @example
*
* R.sum([2,4,6,8,100,1]); //=> 121
*/
var sum = reduce(_add, 0);
/**
* Returns all but the first element of a list. If the list provided has the `tail` method,
* it will instead return `list.tail()`.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [a]
* @param {Array} list The array to consider.
* @return {Array} A new array containing all but the first element of the input list, or an
* empty list if the input list is empty.
* @example
*
* R.tail(['fi', 'fo', 'fum']); //=> ['fo', 'fum']
*/
var tail = _checkForMethod('tail', function (list) {
return _slice(list, 1);
});
/**
* Returns a new list containing the first `n` elements of the given list.
* If `n > list.length`, returns a list of `list.length` elements.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* Dispatches to its second argument's `slice` method if present. As a
* result, one may replace `[a]` with `String` in the type signature.
*
* @func
* @memberOf R
* @category List
* @sig Number -> [a] -> [a]
* @param {Number} n The number of elements to return.
* @param {Array} xs The collection to consider.
* @return {Array}
* @example
*
* R.take(1, ['foo', 'bar', 'baz']); //=> ['foo']
* R.take(2, ['foo', 'bar', 'baz']); //=> ['foo', 'bar']
* R.take(3, ['foo', 'bar', 'baz']); //=> ['foo', 'bar', 'baz']
* R.take(4, ['foo', 'bar', 'baz']); //=> ['foo', 'bar', 'baz']
* R.take(3, 'ramda'); //=> 'ram'
*
* var personnel = [
* 'Dave Brubeck',
* 'Paul Desmond',
* 'Eugene Wright',
* 'Joe Morello',
* 'Gerry Mulligan',
* 'Bob Bates',
* 'Joe Dodge',
* 'Ron Crotty'
* ];
*
* takeFive(personnel);
* //=> ['Dave Brubeck', 'Paul Desmond', 'Eugene Wright', 'Joe Morello', 'Gerry Mulligan']
*/
var take = _curry2(_dispatchable('take', _xtake, function take(n, xs) {
return slice(0, n < 0 ? Infinity : n, xs);
}));
/**
* Returns a new list containing the first `n` elements of a given list, passing each value
* to the supplied predicate function, and terminating when the predicate function returns
* `false`. Excludes the element that caused the predicate function to fail. The predicate
* function is passed one argument: *(value)*.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a -> Boolean) -> [a] -> [a]
* @param {Function} fn The function called per iteration.
* @param {Array} list The collection to iterate over.
* @return {Array} A new array.
* @example
*
* var isNotFour = function(x) {
* return !(x === 4);
* };
*
* R.takeWhile(isNotFour, [1, 2, 3, 4]); //=> [1, 2, 3]
*/
var takeWhile = _curry2(_dispatchable('takeWhile', _xtakeWhile, function takeWhile(fn, list) {
var idx = 0, len = list.length;
while (idx < len && fn(list[idx])) {
idx += 1;
}
return _slice(list, 0, idx);
}));
/**
* The lower case version of a string.
*
* @func
* @memberOf R
* @category String
* @sig String -> String
* @param {String} str The string to lower case.
* @return {String} The lower case version of `str`.
* @example
*
* R.toLower('XYZ'); //=> 'xyz'
*/
var toLower = invoker(0, 'toLowerCase');
/**
* The upper case version of a string.
*
* @func
* @memberOf R
* @category String
* @sig String -> String
* @param {String} str The string to upper case.
* @return {String} The upper case version of `str`.
* @example
*
* R.toUpper('abc'); //=> 'ABC'
*/
var toUpper = invoker(0, 'toUpperCase');
/**
* Initializes a transducer using supplied iterator function. Returns a single item by
* iterating through the list, successively calling the transformed iterator function and
* passing it an accumulator value and the current value from the array, and then passing
* the result to the next call.
*
* The iterator function receives two values: *(acc, value)*. It will be wrapped as a
* transformer to initialize the transducer. A transformer can be passed directly in place
* of an iterator function. In both cases, iteration may be stopped early with the
* `R.reduced` function.
*
* A transducer is a function that accepts a transformer and returns a transformer and can
* be composed directly.
*
* A transformer is an an object that provides a 2-arity reducing iterator function, step,
* 0-arity initial value function, init, and 1-arity result extraction function, result.
* The step function is used as the iterator function in reduce. The result function is used
* to convert the final accumulator into the return type and in most cases is R.identity.
* The init function can be used to provide an initial accumulator, but is ignored by transduce.
*
* The iteration is performed with R.reduce after initializing the transducer.
* @see R.reduce
* @see R.reduced
*
* @func
* @memberOf R
* @category List
* @sig (c -> c) -> (a,b -> a) -> a -> [b] -> a
* @param {Function} xf The transducer function. Receives a transformer and returns a transformer.
* @param {Function} fn The iterator function. Receives two values, the accumulator and the
* current element from the array. Wrapped as transformer, if necessary, and used to
* initialize the transducer
* @param {*} acc The initial accumulator value.
* @param {Array} list The list to iterate over.
* @see R.into
* @return {*} The final, accumulated value.
* @example
*
* var numbers = [1, 2, 3, 4];
* var transducer = R.compose(R.map(R.add(1)), R.take(2));
*
* R.transduce(transducer, R.flip(R.append), [], numbers); //=> [2, 3]
*/
var transduce = curryN(4, function (xf, fn, acc, list) {
return _reduce(xf(typeof fn === 'function' ? _xwrap(fn) : fn), acc, list);
});
/**
* Returns a function of arity `n` from a (manually) curried function.
*
* @func
* @memberOf R
* @category Function
* @sig Number -> (a -> b) -> (a -> c)
* @param {Number} length The arity for the returned function.
* @param {Function} fn The function to uncurry.
* @return {Function} A new function.
* @see R.curry
* @example
*
* var addFour = function(a) {
* return function(b) {
* return function(c) {
* return function(d) {
* return a + b + c + d;
* };
* };
* };
* };
*
* var uncurriedAddFour = R.uncurryN(4, addFour);
* curriedAddFour(1, 2, 3, 4); //=> 10
*/
var uncurryN = _curry2(function uncurryN(depth, fn) {
return curryN(depth, function () {
var currentDepth = 1;
var value = fn;
var idx = 0;
var endIdx;
while (currentDepth <= depth && typeof value === 'function') {
endIdx = currentDepth === depth ? arguments.length : idx + value.length;
value = value.apply(this, _slice(arguments, idx, endIdx));
currentDepth += 1;
idx = endIdx;
}
return value;
});
});
/**
* Combines two lists into a set (i.e. no duplicates) composed of the elements of each list. Duplication is
* determined according to the value returned by applying the supplied predicate to two list elements.
*
* @func
* @memberOf R
* @category Relation
* @sig (a,a -> Boolean) -> [a] -> [a] -> [a]
* @param {Function} pred A predicate used to test whether two items are equal.
* @param {Array} list1 The first list.
* @param {Array} list2 The second list.
* @return {Array} The first and second lists concatenated, with
* duplicates removed.
* @see R.union
* @example
*
* function cmp(x, y) { return x.a === y.a; }
* var l1 = [{a: 1}, {a: 2}];
* var l2 = [{a: 1}, {a: 4}];
* R.unionWith(cmp, l1, l2); //=> [{a: 1}, {a: 2}, {a: 4}]
*/
var unionWith = _curry3(function unionWith(pred, list1, list2) {
return uniqWith(pred, _concat(list1, list2));
});
/**
* Returns a new list containing only one copy of each element in the original list.
* `R.equals` is used to determine equality.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [a]
* @param {Array} list The array to consider.
* @return {Array} The list of unique items.
* @example
*
* R.uniq([1, 1, 2, 1]); //=> [1, 2]
* R.uniq([1, '1']); //=> [1, '1']
* R.uniq([[42], [42]]); //=> [[42]]
*/
var uniq = uniqWith(equals);
/**
* Returns a new list by pulling every item at the first level of nesting out, and putting
* them in a new array.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [b]
* @param {Array} list The array to consider.
* @return {Array} The flattened list.
* @example
*
* R.unnest([1, [2], [[3]]]); //=> [1, 2, [3]]
* R.unnest([[1, 2], [3, 4], [5, 6]]); //=> [1, 2, 3, 4, 5, 6]
*/
var unnest = _curry1(_makeFlat(false));
/**
* Takes a spec object and a test object; returns true if the test satisfies
* the spec, false otherwise. An object satisfies the spec if, for each of the
* spec's own properties, accessing that property of the object gives the same
* value (in `R.equals` terms) as accessing that property of the spec.
*
* `whereEq` is a specialization of [`where`](#where).
*
* @func
* @memberOf R
* @category Object
* @sig {String: *} -> {String: *} -> Boolean
* @param {Object} spec
* @param {Object} testObj
* @return {Boolean}
* @see R.where
* @example
*
* // pred :: Object -> Boolean
* var pred = R.whereEq({a: 1, b: 2});
*
* pred({a: 1}); //=> false
* pred({a: 1, b: 2}); //=> true
* pred({a: 1, b: 2, c: 3}); //=> true
* pred({a: 1, b: 1}); //=> false
*/
var whereEq = _curry2(function whereEq(spec, testObj) {
return where(mapObj(equals, spec), testObj);
});
/**
* Wrap a function inside another to allow you to make adjustments to the parameters, or do
* other processing either before the internal function is called or with its results.
*
* @func
* @memberOf R
* @category Function
* @sig (a... -> b) -> ((a... -> b) -> a... -> c) -> (a... -> c)
* @param {Function} fn The function to wrap.
* @param {Function} wrapper The wrapper function.
* @return {Function} The wrapped function.
* @example
*
* var greet = function(name) {return 'Hello ' + name;};
*
* var shoutedGreet = R.wrap(greet, function(gr, name) {
* return gr(name).toUpperCase();
* });
* shoutedGreet("Kathy"); //=> "HELLO KATHY"
*
* var shortenedGreet = R.wrap(greet, function(gr, name) {
* return gr(name.substring(0, 3));
* });
* shortenedGreet("Robert"); //=> "Hello Rob"
*/
var wrap = _curry2(function wrap(fn, wrapper) {
return curryN(fn.length, function () {
return wrapper.apply(this, _concat([fn], arguments));
});
});
var _chain = _curry2(function _chain(f, list) {
return unnest(map(f, list));
});
var _flatCat = function () {
var preservingReduced = function (xf) {
return {
'@@transducer/init': _xfBase.init,
'@@transducer/result': function (result) {
return xf['@@transducer/result'](result);
},
'@@transducer/step': function (result, input) {
var ret = xf['@@transducer/step'](result, input);
return ret['@@transducer/reduced'] ? _forceReduced(ret) : ret;
}
};
};
return function _xcat(xf) {
var rxf = preservingReduced(xf);
return {
'@@transducer/init': _xfBase.init,
'@@transducer/result': function (result) {
return rxf['@@transducer/result'](result);
},
'@@transducer/step': function (result, input) {
return !isArrayLike(input) ? _reduce(rxf, result, [input]) : _reduce(rxf, result, input);
}
};
};
}();
var _indexOf = function _indexOf(list, item, from) {
var idx = 0, len = list.length;
if (typeof from === 'number') {
idx = from < 0 ? Math.max(0, len + from) : from;
}
while (idx < len) {
if (equals(list[idx], item)) {
return idx;
}
idx += 1;
}
return -1;
};
var _lastIndexOf = function _lastIndexOf(list, item, from) {
var idx;
if (typeof from === 'number') {
idx = from < 0 ? list.length + from : Math.min(list.length - 1, from);
} else {
idx = list.length - 1;
}
while (idx >= 0) {
if (equals(list[idx], item)) {
return idx;
}
idx -= 1;
}
return -1;
};
var _pluck = function _pluck(p, list) {
return map(prop(p), list);
};
/**
* Create a predicate wrapper which will call a pick function (all/any) for each predicate
*
* @private
* @see R.all
* @see R.any
*/
// Call function immediately if given arguments
// Return a function which will call the predicates with the provided arguments
var _predicateWrap = function _predicateWrap(predPicker) {
return function (preds) {
var predIterator = function () {
var args = arguments;
return predPicker(function (predicate) {
return predicate.apply(null, args);
}, preds);
};
return arguments.length > 1 ? // Call function immediately if given arguments
predIterator.apply(null, _slice(arguments, 1)) : // Return a function which will call the predicates with the provided arguments
arity(max(_pluck('length', preds)), predIterator);
};
};
var _stepCat = function () {
var _stepCatArray = {
'@@transducer/init': Array,
'@@transducer/step': function (xs, x) {
return _concat(xs, [x]);
},
'@@transducer/result': _identity
};
var _stepCatString = {
'@@transducer/init': String,
'@@transducer/step': _add,
'@@transducer/result': _identity
};
var _stepCatObject = {
'@@transducer/init': Object,
'@@transducer/step': function (result, input) {
return merge(result, isArrayLike(input) ? _createMapEntry(input[0], input[1]) : input);
},
'@@transducer/result': _identity
};
return function _stepCat(obj) {
if (_isTransformer(obj)) {
return obj;
}
if (isArrayLike(obj)) {
return _stepCatArray;
}
if (typeof obj === 'string') {
return _stepCatString;
}
if (typeof obj === 'object') {
return _stepCatObject;
}
throw new Error('Cannot create transformer for ' + obj);
};
}();
// Function, RegExp, user-defined types
var _toString = function _toString(x, seen) {
var recur = function recur(y) {
var xs = seen.concat([x]);
return _indexOf(xs, y) >= 0 ? '<Circular>' : _toString(y, xs);
};
switch (Object.prototype.toString.call(x)) {
case '[object Arguments]':
return '(function() { return arguments; }(' + _map(recur, x).join(', ') + '))';
case '[object Array]':
return '[' + _map(recur, x).join(', ') + ']';
case '[object Boolean]':
return typeof x === 'object' ? 'new Boolean(' + recur(x.valueOf()) + ')' : x.toString();
case '[object Date]':
return 'new Date(' + _quote(_toISOString(x)) + ')';
case '[object Null]':
return 'null';
case '[object Number]':
return typeof x === 'object' ? 'new Number(' + recur(x.valueOf()) + ')' : 1 / x === -Infinity ? '-0' : x.toString(10);
case '[object String]':
return typeof x === 'object' ? 'new String(' + recur(x.valueOf()) + ')' : _quote(x);
case '[object Undefined]':
return 'undefined';
default:
return typeof x.constructor === 'function' && x.constructor.name !== 'Object' && typeof x.toString === 'function' && x.toString() !== '[object Object]' ? x.toString() : // Function, RegExp, user-defined types
'{' + _map(function (k) {
return _quote(k) + ': ' + recur(x[k]);
}, keys(x).sort()).join(', ') + '}';
}
};
var _xchain = _curry2(function _xchain(f, xf) {
return map(f, _flatCat(xf));
});
/**
* Creates a new list iteration function from an existing one by adding two new parameters
* to its callback function: the current index, and the entire list.
*
* This would turn, for instance, Ramda's simple `map` function into one that more closely
* resembles `Array.prototype.map`. Note that this will only work for functions in which
* the iteration callback function is the first parameter, and where the list is the last
* parameter. (This latter might be unimportant if the list parameter is not used.)
*
* @func
* @memberOf R
* @category Function
* @category List
* @sig ((a ... -> b) ... -> [a] -> *) -> (a ..., Int, [a] -> b) ... -> [a] -> *)
* @param {Function} fn A list iteration function that does not pass index/list to its callback
* @return An altered list iteration function thats passes index/list to its callback
* @example
*
* var mapIndexed = R.addIndex(R.map);
* mapIndexed(function(val, idx) {return idx + '-' + val;}, ['f', 'o', 'o', 'b', 'a', 'r']);
* //=> ['0-f', '1-o', '2-o', '3-b', '4-a', '5-r']
*/
var addIndex = _curry1(function (fn) {
return curryN(fn.length, function () {
var idx = 0;
var origFn = arguments[0];
var list = arguments[arguments.length - 1];
var indexedFn = function () {
var result = origFn.apply(this, _concat(arguments, [
idx,
list
]));
idx += 1;
return result;
};
return fn.apply(this, _prepend(indexedFn, _slice(arguments, 1)));
});
});
/**
* ap applies a list of functions to a list of values.
*
* @func
* @memberOf R
* @category Function
* @sig [f] -> [a] -> [f a]
* @param {Array} fns An array of functions
* @param {Array} vs An array of values
* @return {Array} An array of results of applying each of `fns` to all of `vs` in turn.
* @example
*
* R.ap([R.multiply(2), R.add(3)], [1,2,3]); //=> [2, 4, 6, 4, 5, 6]
*/
var ap = _curry2(function ap(fns, vs) {
return _hasMethod('ap', fns) ? fns.ap(vs) : _reduce(function (acc, fn) {
return _concat(acc, map(fn, vs));
}, [], fns);
});
/**
* `chain` maps a function over a list and concatenates the results.
* This implementation is compatible with the
* Fantasy-land Chain spec, and will work with types that implement that spec.
* `chain` is also known as `flatMap` in some libraries
*
* @func
* @memberOf R
* @category List
* @sig (a -> [b]) -> [a] -> [b]
* @param {Function} fn
* @param {Array} list
* @return {Array}
* @example
*
* var duplicate = function(n) {
* return [n, n];
* };
* R.chain(duplicate, [1, 2, 3]); //=> [1, 1, 2, 2, 3, 3]
*/
var chain = _curry2(_dispatchable('chain', _xchain, _chain));
/**
* Turns a list of Functors into a Functor of a list, applying
* a mapping function to the elements of the list along the way.
*
* @func
* @memberOf R
* @category List
* @see R.commute
* @sig Functor f => (f a -> f b) -> (x -> f x) -> [f a] -> f [b]
* @param {Function} fn The transformation function
* @param {Function} of A function that returns the data type to return
* @param {Array} list An array of functors of the same type
* @return {*}
* @example
*
* R.commuteMap(R.map(R.add(10)), R.of, [[1], [2, 3]]); //=> [[11, 12], [11, 13]]
* R.commuteMap(R.map(R.add(10)), R.of, [[1, 2], [3]]); //=> [[11, 13], [12, 13]]
* R.commuteMap(R.map(R.add(10)), R.of, [[1], [2], [3]]); //=> [[11, 12, 13]]
* R.commuteMap(R.map(R.add(10)), Maybe.of, [Just(1), Just(2), Just(3)]); //=> Just([11, 12, 13])
* R.commuteMap(R.map(R.add(10)), Maybe.of, [Just(1), Just(2), Nothing()]); //=> Nothing()
*/
var commuteMap = _curry3(function commuteMap(fn, of, list) {
function consF(acc, ftor) {
return ap(map(append, fn(ftor)), acc);
}
return _reduce(consF, of([]), list);
});
/**
* Returns a curried equivalent of the provided function. The curried
* function has two unusual capabilities. First, its arguments needn't
* be provided one at a time. If `f` is a ternary function and `g` is
* `R.curry(f)`, the following are equivalent:
*
* - `g(1)(2)(3)`
* - `g(1)(2, 3)`
* - `g(1, 2)(3)`
* - `g(1, 2, 3)`
*
* Secondly, the special placeholder value `R.__` may be used to specify
* "gaps", allowing partial application of any combination of arguments,
* regardless of their positions. If `g` is as above and `_` is `R.__`,
* the following are equivalent:
*
* - `g(1, 2, 3)`
* - `g(_, 2, 3)(1)`
* - `g(_, _, 3)(1)(2)`
* - `g(_, _, 3)(1, 2)`
* - `g(_, 2)(1)(3)`
* - `g(_, 2)(1, 3)`
* - `g(_, 2)(_, 3)(1)`
*
* @func
* @memberOf R
* @category Function
* @sig (* -> a) -> (* -> a)
* @param {Function} fn The function to curry.
* @return {Function} A new, curried function.
* @see R.curryN
* @example
*
* var addFourNumbers = function(a, b, c, d) {
* return a + b + c + d;
* };
*
* var curriedAddFourNumbers = R.curry(addFourNumbers);
* var f = curriedAddFourNumbers(1, 2);
* var g = f(3);
* g(4); //=> 10
*/
var curry = _curry1(function curry(fn) {
return curryN(fn.length, fn);
});
/**
* Returns a list containing all but the first `n` elements of the given `list`.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* Dispatches to its second argument's `slice` method if present. As a
* result, one may replace `[a]` with `String` in the type signature.
*
* @func
* @memberOf R
* @category List
* @sig Number -> [a] -> [a]
* @param {Number} n The number of elements of `xs` to skip.
* @param {Array} xs The collection to consider.
* @return {Array}
* @example
*
* R.drop(1, ['foo', 'bar', 'baz']); //=> ['bar', 'baz']
* R.drop(2, ['foo', 'bar', 'baz']); //=> ['baz']
* R.drop(3, ['foo', 'bar', 'baz']); //=> []
* R.drop(4, ['foo', 'bar', 'baz']); //=> []
* R.drop(3, 'ramda'); //=> 'da'
*/
var drop = _curry2(_dispatchable('drop', _xdrop, function drop(n, xs) {
return slice(Math.max(0, n), Infinity, xs);
}));
/**
* Returns a new list without any consecutively repeating elements. Equality is
* determined by applying the supplied predicate two consecutive elements.
* The first element in a series of equal element is the one being preserved.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig (a, a -> Boolean) -> [a] -> [a]
* @param {Function} pred A predicate used to test whether two items are equal.
* @param {Array} list The array to consider.
* @return {Array} `list` without repeating elements.
* @example
*
* function lengthEq(x, y) { return Math.abs(x) === Math.abs(y); };
* var l = [1, -1, 1, 3, 4, -4, -4, -5, 5, 3, 3];
* R.dropRepeatsWith(lengthEq, l); //=> [1, 3, 4, -5, 3]
*/
var dropRepeatsWith = _curry2(_dispatchable('dropRepeatsWith', _xdropRepeatsWith, function dropRepeatsWith(pred, list) {
var result = [];
var idx = 1;
var len = list.length;
if (len !== 0) {
result[0] = list[0];
while (idx < len) {
if (!pred(last(result), list[idx])) {
result[result.length] = list[idx];
}
idx += 1;
}
}
return result;
}));
/**
* Performs a deep test on whether two items are equal.
* Equality implies the two items are semmatically equivalent.
* Cyclic structures are handled as expected
* @see R.equals
*
* @func
* @memberOf R
* @category Relation
* @sig a -> b -> Boolean
* @param {*} a
* @param {*} b
* @return {Boolean}
* @deprecated since v0.15.0
* @example
*
* var o = {};
* R.eqDeep(o, o); //=> true
* R.eqDeep(o, {}); //=> true
* R.eqDeep(1, 1); //=> true
* R.eqDeep(1, '1'); //=> false
*
* var a = {}; a.v = a;
* var b = {}; b.v = b;
* R.eqDeep(a, b); //=> true
*/
var eqDeep = equals;
/**
* Reports whether two objects have the same value, in `R.equals` terms,
* for the specified property. Useful as a curried predicate.
*
* @func
* @memberOf R
* @category Object
* @sig k -> {k: v} -> {k: v} -> Boolean
* @param {String} prop The name of the property to compare
* @param {Object} obj1
* @param {Object} obj2
* @return {Boolean}
*
* @example
*
* var o1 = { a: 1, b: 2, c: 3, d: 4 };
* var o2 = { a: 10, b: 20, c: 3, d: 40 };
* R.eqProps('a', o1, o2); //=> false
* R.eqProps('c', o1, o2); //=> true
*/
var eqProps = _curry3(function eqProps(prop, obj1, obj2) {
return equals(obj1[prop], obj2[prop]);
});
/**
* Returns a new function much like the supplied one, except that the first two arguments'
* order is reversed.
*
* @func
* @memberOf R
* @category Function
* @sig (a -> b -> c -> ... -> z) -> (b -> a -> c -> ... -> z)
* @param {Function} fn The function to invoke with its first two parameters reversed.
* @return {*} The result of invoking `fn` with its first two parameters' order reversed.
* @example
*
* var mergeThree = function(a, b, c) {
* return ([]).concat(a, b, c);
* };
*
* mergeThree(1, 2, 3); //=> [1, 2, 3]
*
* R.flip(mergeThree)(1, 2, 3); //=> [2, 1, 3]
*/
var flip = _curry1(function flip(fn) {
return curry(function (a, b) {
var args = _slice(arguments);
args[0] = b;
args[1] = a;
return fn.apply(this, args);
});
});
/**
* Returns the position of the first occurrence of an item in an array,
* or -1 if the item is not included in the array. `R.equals` is used to
* determine equality.
*
* @func
* @memberOf R
* @category List
* @sig a -> [a] -> Number
* @param {*} target The item to find.
* @param {Array} xs The array to search in.
* @return {Number} the index of the target, or -1 if the target is not found.
*
* @example
*
* R.indexOf(3, [1,2,3,4]); //=> 2
* R.indexOf(10, [1,2,3,4]); //=> -1
*/
var indexOf = _curry2(function indexOf(target, xs) {
return _hasMethod('indexOf', xs) ? xs.indexOf(target) : _indexOf(xs, target);
});
/**
* Returns all but the last element of a list.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [a]
* @param {Array} list The array to consider.
* @return {Array} A new array containing all but the last element of the input list, or an
* empty list if the input list is empty.
* @example
*
* R.init(['fi', 'fo', 'fum']); //=> ['fi', 'fo']
*/
var init = slice(0, -1);
/**
* Transforms the items of the list with the transducer and appends the transformed items to
* the accumulator using an appropriate iterator function based on the accumulator type.
*
* The accumulator can be an array, string, object or a transformer. Iterated items will
* be appended to arrays and concatenated to strings. Objects will be merged directly or 2-item
* arrays will be merged as key, value pairs.
*
* The accumulator can also be a transformer object that provides a 2-arity reducing iterator
* function, step, 0-arity initial value function, init, and 1-arity result extraction function
* result. The step function is used as the iterator function in reduce. The result function is
* used to convert the final accumulator into the return type and in most cases is R.identity.
* The init function is used to provide the initial accumulator.
*
* The iteration is performed with R.reduce after initializing the transducer.
*
* @func
* @memberOf R
* @category List
* @sig a -> (b -> b) -> [c] -> a
* @param {*} acc The initial accumulator value.
* @param {Function} xf The transducer function. Receives a transformer and returns a transformer.
* @param {Array} list The list to iterate over.
* @return {*} The final, accumulated value.
* @example
*
* var numbers = [1, 2, 3, 4];
* var transducer = R.compose(R.map(R.add(1)), R.take(2));
*
* R.into([], transducer, numbers); //=> [2, 3]
*
* var intoArray = R.into([]);
* intoArray(transducer, numbers); //=> [2, 3]
*/
var into = _curry3(function into(acc, xf, list) {
return _isTransformer(acc) ? _reduce(xf(acc), acc['@@transducer/init'](), list) : _reduce(xf(_stepCat(acc)), acc, list);
});
/**
* Returns the result of applying `obj[methodName]` to `args`.
*
* @func
* @memberOf R
* @category Object
* @sig String -> [*] -> Object -> *
* @param {String} methodName
* @param {Array} args
* @param {Object} obj
* @return {*}
* @deprecated since v0.15.0
* @example
*
* // toBinary :: Number -> String
* var toBinary = R.invoke('toString', [2])
*
* toBinary(42); //=> '101010'
* toBinary(63); //=> '111111'
*/
var invoke = curry(function invoke(methodName, args, obj) {
return obj[methodName].apply(obj, args);
});
/**
* Returns `true` if all elements are unique, in `R.equals` terms,
* otherwise `false`.
*
* @func
* @memberOf R
* @category List
* @sig [a] -> Boolean
* @param {Array} list The array to consider.
* @return {Boolean} `true` if all elements are unique, else `false`.
* @example
*
* R.isSet(['1', 1]); //=> true
* R.isSet([1, 1]); //=> false
* R.isSet([[42], [42]]); //=> false
*/
var isSet = _curry1(function isSet(list) {
var len = list.length;
var idx = 0;
while (idx < len) {
if (_indexOf(list, list[idx], idx + 1) >= 0) {
return false;
}
idx += 1;
}
return true;
});
/**
* Returns the position of the last occurrence of an item in
* an array, or -1 if the item is not included in the array.
* `R.equals` is used to determine equality.
*
* @func
* @memberOf R
* @category List
* @sig a -> [a] -> Number
* @param {*} target The item to find.
* @param {Array} xs The array to search in.
* @return {Number} the index of the target, or -1 if the target is not found.
*
* @example
*
* R.lastIndexOf(3, [-1,3,3,0,1,2,3,4]); //=> 6
* R.lastIndexOf(10, [1,2,3,4]); //=> -1
*/
var lastIndexOf = _curry2(function lastIndexOf(target, xs) {
return _hasMethod('lastIndexOf', xs) ? xs.lastIndexOf(target) : _lastIndexOf(xs, target);
});
/**
* "lifts" a function to be the specified arity, so that it may "map over" that many
* lists (or other Functors).
*
* @func
* @memberOf R
* @see R.lift
* @category Function
* @sig Number -> (*... -> *) -> ([*]... -> [*])
* @param {Function} fn The function to lift into higher context
* @return {Function} The function `fn` applicable to mappable objects.
* @example
*
* var madd3 = R.liftN(3, R.curryN(3, function() {
* return R.reduce(R.add, 0, arguments);
* }));
* madd3([1,2,3], [1,2,3], [1]); //=> [3, 4, 5, 4, 5, 6, 5, 6, 7]
*/
var liftN = _curry2(function liftN(arity, fn) {
var lifted = curryN(arity, fn);
return curryN(arity, function () {
return _reduce(ap, map(lifted, arguments[0]), _slice(arguments, 1));
});
});
/**
* Returns the mean of the given list of numbers.
*
* @func
* @memberOf R
* @category Math
* @sig [Number] -> Number
* @param {Array} list
* @return {Number}
* @example
*
* R.mean([2, 7, 9]); //=> 6
* R.mean([]); //=> NaN
*/
var mean = _curry1(function mean(list) {
return sum(list) / list.length;
});
/**
* Returns the median of the given list of numbers.
*
* @func
* @memberOf R
* @category Math
* @sig [Number] -> Number
* @param {Array} list
* @return {Number}
* @example
*
* R.median([2, 9, 7]); //=> 7
* R.median([7, 2, 10, 9]); //=> 8
* R.median([]); //=> NaN
*/
var median = _curry1(function median(list) {
var len = list.length;
if (len === 0) {
return NaN;
}
var width = 2 - len % 2;
var idx = (len - width) / 2;
return mean(_slice(list).sort(function (a, b) {
return a < b ? -1 : a > b ? 1 : 0;
}).slice(idx, idx + width));
});
/**
* Merges a list of objects together into one object.
*
* @func
* @memberOf R
* @category List
* @sig [{k: v}] -> {k: v}
* @param {Array} list An array of objects
* @return {Object} A merged object.
* @see R.reduce
* @example
*
* R.mergeAll([{foo:1},{bar:2},{baz:3}]); //=> {foo:1,bar:2,baz:3}
* R.mergeAll([{foo:1},{foo:2},{bar:2}]); //=> {foo:2,bar:2}
*/
var mergeAll = _curry1(function mergeAll(list) {
return reduce(merge, {}, list);
});
/**
* Returns a partial copy of an object omitting the keys specified.
*
* @func
* @memberOf R
* @category Object
* @sig [String] -> {String: *} -> {String: *}
* @param {Array} names an array of String property names to omit from the new object
* @param {Object} obj The object to copy from
* @return {Object} A new object with properties from `names` not on it.
* @example
*
* R.omit(['a', 'd'], {a: 1, b: 2, c: 3, d: 4}); //=> {b: 2, c: 3}
*/
var omit = _curry2(function omit(names, obj) {
var result = {};
for (var prop in obj) {
if (_indexOf(names, prop) < 0) {
result[prop] = obj[prop];
}
}
return result;
});
/**
* Accepts as its arguments a function and any number of values and returns a function that,
* when invoked, calls the original function with all of the values prepended to the
* original function's arguments list. In some libraries this function is named `applyLeft`.
*
* @func
* @memberOf R
* @category Function
* @sig (a -> b -> ... -> i -> j -> ... -> m -> n) -> a -> b-> ... -> i -> (j -> ... -> m -> n)
* @param {Function} fn The function to invoke.
* @param {...*} [args] Arguments to prepend to `fn` when the returned function is invoked.
* @return {Function} A new function wrapping `fn`. When invoked, it will call `fn`
* with `args` prepended to `fn`'s arguments list.
* @example
*
* var multiply = function(a, b) { return a * b; };
* var double = R.partial(multiply, 2);
* double(2); //=> 4
*
* var greet = function(salutation, title, firstName, lastName) {
* return salutation + ', ' + title + ' ' + firstName + ' ' + lastName + '!';
* };
* var sayHello = R.partial(greet, 'Hello');
* var sayHelloToMs = R.partial(sayHello, 'Ms.');
* sayHelloToMs('Jane', 'Jones'); //=> 'Hello, Ms. Jane Jones!'
*/
var partial = curry(_createPartialApplicator(_concat));
/**
* Accepts as its arguments a function and any number of values and returns a function that,
* when invoked, calls the original function with all of the values appended to the original
* function's arguments list.
*
* Note that `partialRight` is the opposite of `partial`: `partialRight` fills `fn`'s arguments
* from the right to the left. In some libraries this function is named `applyRight`.
*
* @func
* @memberOf R
* @category Function
* @sig (a -> b-> ... -> i -> j -> ... -> m -> n) -> j -> ... -> m -> n -> (a -> b-> ... -> i)
* @param {Function} fn The function to invoke.
* @param {...*} [args] Arguments to append to `fn` when the returned function is invoked.
* @return {Function} A new function wrapping `fn`. When invoked, it will call `fn` with
* `args` appended to `fn`'s arguments list.
* @example
*
* var greet = function(salutation, title, firstName, lastName) {
* return salutation + ', ' + title + ' ' + firstName + ' ' + lastName + '!';
* };
* var greetMsJaneJones = R.partialRight(greet, 'Ms.', 'Jane', 'Jones');
*
* greetMsJaneJones('Hello'); //=> 'Hello, Ms. Jane Jones!'
*/
var partialRight = curry(_createPartialApplicator(flip(_concat)));
/**
* Returns a new list by plucking the same named property off all objects in the list supplied.
*
* @func
* @memberOf R
* @category List
* @sig k -> [{k: v}] -> [v]
* @param {Number|String} key The key name to pluck off of each object.
* @param {Array} list The array to consider.
* @return {Array} The list of values for the given key.
* @example
*
* R.pluck('a')([{a: 1}, {a: 2}]); //=> [1, 2]
* R.pluck(0)([[1, 2], [3, 4]]); //=> [1, 3]
*/
var pluck = _curry2(_pluck);
/**
* Multiplies together all the elements of a list.
*
* @func
* @memberOf R
* @category Math
* @sig [Number] -> Number
* @param {Array} list An array of numbers
* @return {Number} The product of all the numbers in the list.
* @see R.reduce
* @example
*
* R.product([2,4,6,8,100,1]); //=> 38400
*/
var product = reduce(_multiply, 1);
/**
* Returns the string representation of the given value. `eval`'ing the output
* should result in a value equivalent to the input value. Many of the built-in
* `toString` methods do not satisfy this requirement.
*
* If the given value is an `[object Object]` with a `toString` method other
* than `Object.prototype.toString`, this method is invoked with no arguments
* to produce the return value. This means user-defined constructor functions
* can provide a suitable `toString` method. For example:
*
* function Point(x, y) {
* this.x = x;
* this.y = y;
* }
*
* Point.prototype.toString = function() {
* return 'new Point(' + this.x + ', ' + this.y + ')';
* };
*
* R.toString(new Point(1, 2)); //=> 'new Point(1, 2)'
*
* @func
* @memberOf R
* @category String
* @sig * -> String
* @param {*} val
* @return {String}
* @example
*
* R.toString(42); //=> '42'
* R.toString('abc'); //=> '"abc"'
* R.toString([1, 2, 3]); //=> '[1, 2, 3]'
* R.toString({foo: 1, bar: 2, baz: 3}); //=> '{"bar": 2, "baz": 3, "foo": 1}'
* R.toString(new Date('2001-02-03T04:05:06Z')); //=> 'new Date("2001-02-03T04:05:06.000Z")'
*/
var toString = _curry1(function toString(val) {
return _toString(val, []);
});
/**
* Combines two lists into a set (i.e. no duplicates) composed of the
* elements of each list.
*
* @func
* @memberOf R
* @category Relation
* @sig [a] -> [a] -> [a]
* @param {Array} as The first list.
* @param {Array} bs The second list.
* @return {Array} The first and second lists concatenated, with
* duplicates removed.
* @example
*
* R.union([1, 2, 3], [2, 3, 4]); //=> [1, 2, 3, 4]
*/
var union = _curry2(compose(uniq, _concat));
/**
* Accepts a function `fn` and any number of transformer functions and returns a new
* function. When the new function is invoked, it calls the function `fn` with parameters
* consisting of the result of calling each supplied handler on successive arguments to the
* new function.
*
* If more arguments are passed to the returned function than transformer functions, those
* arguments are passed directly to `fn` as additional parameters. If you expect additional
* arguments that don't need to be transformed, although you can ignore them, it's best to
* pass an identity function so that the new function reports the correct arity.
*
* @func
* @memberOf R
* @category Function
* @sig (x1 -> x2 -> ... -> z) -> ((a -> x1), (b -> x2), ...) -> (a -> b -> ... -> z)
* @param {Function} fn The function to wrap.
* @param {...Function} transformers A variable number of transformer functions
* @return {Function} The wrapped function.
* @example
*
* // Example 1:
*
* // Number -> [Person] -> [Person]
* var byAge = R.useWith(R.filter, R.propEq('age'), R.identity);
*
* var kids = [
* {name: 'Abbie', age: 6},
* {name: 'Brian', age: 5},
* {name: 'Chris', age: 6},
* {name: 'David', age: 4},
* {name: 'Ellie', age: 5}
* ];
*
* byAge(5, kids); //=> [{name: 'Brian', age: 5}, {name: 'Ellie', age: 5}]
*
* // Example 2:
*
* var double = function(y) { return y * 2; };
* var square = function(x) { return x * x; };
* var add = function(a, b) { return a + b; };
* // Adds any number of arguments together
* var addAll = function() {
* return R.reduce(add, 0, arguments);
* };
*
* // Basic example
* var addDoubleAndSquare = R.useWith(addAll, double, square);
*
* //≅ addAll(double(10), square(5));
* addDoubleAndSquare(10, 5); //=> 45
*
* // Example of passing more arguments than transformers
* //≅ addAll(double(10), square(5), 100);
* addDoubleAndSquare(10, 5, 100); //=> 145
*
* // If there are extra _expected_ arguments that don't need to be transformed, although
* // you can ignore them, it might be best to pass in the identity function so that the new
* // function correctly reports arity.
* var addDoubleAndSquareWithExtraParams = R.useWith(addAll, double, square, R.identity);
* // addDoubleAndSquareWithExtraParams.length //=> 3
* //≅ addAll(double(10), square(5), R.identity(100));
* addDoubleAndSquare(10, 5, 100); //=> 145
*/
/*, transformers */
var useWith = curry(function useWith(fn) {
var transformers = _slice(arguments, 1);
var tlen = transformers.length;
return curry(arity(tlen, function () {
var args = [], idx = 0;
while (idx < tlen) {
args[idx] = transformers[idx](arguments[idx]);
idx += 1;
}
return fn.apply(this, args.concat(_slice(arguments, tlen)));
}));
});
var _contains = function _contains(a, list) {
return _indexOf(list, a) >= 0;
};
/**
* Given a list of predicates, returns a new predicate that will be true exactly when all of them are.
*
* @func
* @memberOf R
* @category Logic
* @sig [(*... -> Boolean)] -> (*... -> Boolean)
* @param {Array} list An array of predicate functions
* @param {*} optional Any arguments to pass into the predicates
* @return {Function} a function that applies its arguments to each of
* the predicates, returning `true` if all are satisfied.
* @example
*
* var gt10 = function(x) { return x > 10; };
* var even = function(x) { return x % 2 === 0};
* var f = R.allPass([gt10, even]);
* f(11); //=> false
* f(12); //=> true
*/
var allPass = curry(_predicateWrap(_all));
/**
* Given a list of predicates returns a new predicate that will be true exactly when any one of them is.
*
* @func
* @memberOf R
* @category Logic
* @sig [(*... -> Boolean)] -> (*... -> Boolean)
* @param {Array} list An array of predicate functions
* @param {*} optional Any arguments to pass into the predicates
* @return {Function} A function that applies its arguments to each of the predicates, returning
* `true` if all are satisfied.
* @example
*
* var gt10 = function(x) { return x > 10; };
* var even = function(x) { return x % 2 === 0};
* var f = R.anyPass([gt10, even]);
* f(11); //=> true
* f(8); //=> true
* f(9); //=> false
*/
var anyPass = curry(_predicateWrap(_any));
/**
* Returns the result of calling its first argument with the remaining
* arguments. This is occasionally useful as a converging function for
* `R.converge`: the left branch can produce a function while the right
* branch produces a value to be passed to that function as an argument.
*
* @func
* @memberOf R
* @category Function
* @sig (*... -> a),*... -> a
* @param {Function} fn The function to apply to the remaining arguments.
* @param {...*} args Any number of positional arguments.
* @return {*}
* @example
*
* var indentN = R.pipe(R.times(R.always(' ')),
* R.join(''),
* R.replace(/^(?!$)/gm));
*
* var format = R.converge(R.call,
* R.pipe(R.prop('indent'), indentN),
* R.prop('value'));
*
* format({indent: 2, value: 'foo\nbar\nbaz\n'}); //=> ' foo\n bar\n baz\n'
*/
var call = curry(function call(fn) {
return fn.apply(this, _slice(arguments, 1));
});
/**
* Turns a list of Functors into a Functor of a list.
*
* @func
* @memberOf R
* @category List
* @see R.commuteMap
* @sig Functor f => (x -> f x) -> [f a] -> f [a]
* @param {Function} of A function that returns the data type to return
* @param {Array} list An array of functors of the same type
* @return {*}
* @example
*
* R.commute(R.of, [[1], [2, 3]]); //=> [[1, 2], [1, 3]]
* R.commute(R.of, [[1, 2], [3]]); //=> [[1, 3], [2, 3]]
* R.commute(R.of, [[1], [2], [3]]); //=> [[1, 2, 3]]
* R.commute(Maybe.of, [Just(1), Just(2), Just(3)]); //=> Just([1, 2, 3])
* R.commute(Maybe.of, [Just(1), Just(2), Nothing()]); //=> Nothing()
*/
var commute = commuteMap(map(identity));
/**
* Wraps a constructor function inside a curried function that can be called with the same
* arguments and returns the same type. The arity of the function returned is specified
* to allow using variadic constructor functions.
*
* @func
* @memberOf R
* @category Function
* @sig Number -> (* -> {*}) -> (* -> {*})
* @param {Number} n The arity of the constructor function.
* @param {Function} Fn The constructor function to wrap.
* @return {Function} A wrapped, curried constructor function.
* @example
*
* // Variadic constructor function
* var Widget = function() {
* this.children = Array.prototype.slice.call(arguments);
* // ...
* };
* Widget.prototype = {
* // ...
* };
* var allConfigs = [
* // ...
* ];
* R.map(R.constructN(1, Widget), allConfigs); // a list of Widgets
*/
var constructN = _curry2(function constructN(n, Fn) {
if (n > 10) {
throw new Error('Constructor with greater than ten arguments');
}
if (n === 0) {
return function () {
return new Fn();
};
}
return curry(nAry(n, function ($0, $1, $2, $3, $4, $5, $6, $7, $8, $9) {
switch (arguments.length) {
case 1:
return new Fn($0);
case 2:
return new Fn($0, $1);
case 3:
return new Fn($0, $1, $2);
case 4:
return new Fn($0, $1, $2, $3);
case 5:
return new Fn($0, $1, $2, $3, $4);
case 6:
return new Fn($0, $1, $2, $3, $4, $5);
case 7:
return new Fn($0, $1, $2, $3, $4, $5, $6);
case 8:
return new Fn($0, $1, $2, $3, $4, $5, $6, $7);
case 9:
return new Fn($0, $1, $2, $3, $4, $5, $6, $7, $8);
case 10:
return new Fn($0, $1, $2, $3, $4, $5, $6, $7, $8, $9);
}
}));
});
/**
* Returns `true` if the specified value is equal, in `R.equals` terms,
* to at least one element of the given list; `false` otherwise.
*
* @func
* @memberOf R
* @category List
* @sig a -> [a] -> Boolean
* @param {Object} a The item to compare against.
* @param {Array} list The array to consider.
* @return {Boolean} `true` if the item is in the list, `false` otherwise.
*
* @example
*
* R.contains(3, [1, 2, 3]); //=> true
* R.contains(4, [1, 2, 3]); //=> false
* R.contains([42], [[42]]); //=> true
*/
var contains = _curry2(_contains);
/**
* Accepts at least three functions and returns a new function. When invoked, this new
* function will invoke the first function, `after`, passing as its arguments the
* results of invoking the subsequent functions with whatever arguments are passed to
* the new function.
*
* @func
* @memberOf R
* @category Function
* @sig (x1 -> x2 -> ... -> z) -> ((a -> b -> ... -> x1), (a -> b -> ... -> x2), ...) -> (a -> b -> ... -> z)
* @param {Function} after A function. `after` will be invoked with the return values of
* `fn1` and `fn2` as its arguments.
* @param {...Function} functions A variable number of functions.
* @return {Function} A new function.
* @example
*
* var add = function(a, b) { return a + b; };
* var multiply = function(a, b) { return a * b; };
* var subtract = function(a, b) { return a - b; };
*
* //≅ multiply( add(1, 2), subtract(1, 2) );
* R.converge(multiply, add, subtract)(1, 2); //=> -3
*
* var add3 = function(a, b, c) { return a + b + c; };
* R.converge(add3, multiply, add, subtract)(1, 2); //=> 4
*/
var converge = curryN(3, function (after) {
var fns = _slice(arguments, 1);
return curryN(max(pluck('length', fns)), function () {
var args = arguments;
var context = this;
return after.apply(context, _map(function (fn) {
return fn.apply(context, args);
}, fns));
});
});
/**
* Finds the set (i.e. no duplicates) of all elements in the first list not contained in the second list.
*
* @func
* @memberOf R
* @category Relation
* @sig [a] -> [a] -> [a]
* @param {Array} list1 The first list.
* @param {Array} list2 The second list.
* @return {Array} The elements in `list1` that are not in `list2`.
* @see R.differenceWith
* @example
*
* R.difference([1,2,3,4], [7,6,5,4,3]); //=> [1,2]
* R.difference([7,6,5,4,3], [1,2,3,4]); //=> [7,6,5]
*/
var difference = _curry2(function difference(first, second) {
var out = [];
var idx = 0;
var firstLen = first.length;
while (idx < firstLen) {
if (!_contains(first[idx], second) && !_contains(first[idx], out)) {
out[out.length] = first[idx];
}
idx += 1;
}
return out;
});
/**
* Returns a new list without any consecutively repeating elements.
* `R.equals` is used to determine equality.
*
* Acts as a transducer if a transformer is given in list position.
* @see R.transduce
*
* @func
* @memberOf R
* @category List
* @sig [a] -> [a]
* @param {Array} list The array to consider.
* @return {Array} `list` without repeating elements.
* @example
*
* R.dropRepeats([1, 1, 1, 2, 3, 4, 4, 2, 2]); //=> [1, 2, 3, 4, 2]
*/
var dropRepeats = _curry1(_dispatchable('dropRepeats', _xdropRepeatsWith(equals), dropRepeatsWith(equals)));
/**
* Combines two lists into a set (i.e. no duplicates) composed of those elements common to both lists.
*
* @func
* @memberOf R
* @category Relation
* @sig [a] -> [a] -> [a]
* @param {Array} list1 The first list.
* @param {Array} list2 The second list.
* @see R.intersectionWith
* @return {Array} The list of elements found in both `list1` and `list2`.
* @example
*
* R.intersection([1,2,3,4], [7,6,5,4,3]); //=> [4, 3]
*/
var intersection = _curry2(function intersection(list1, list2) {
return uniq(_filter(flip(_contains)(list1), list2));
});
/**
* "lifts" a function of arity > 1 so that it may "map over" an Array or
* other Functor.
*
* @func
* @memberOf R
* @see R.liftN
* @category Function
* @sig (*... -> *) -> ([*]... -> [*])
* @param {Function} fn The function to lift into higher context
* @return {Function} The function `fn` applicable to mappable objects.
* @example
*
* var madd3 = R.lift(R.curry(function(a, b, c) {
* return a + b + c;
* }));
* madd3([1,2,3], [1,2,3], [1]); //=> [3, 4, 5, 4, 5, 6, 5, 6, 7]
*
* var madd5 = R.lift(R.curry(function(a, b, c, d, e) {
* return a + b + c + d + e;
* }));
* madd5([1,2], [3], [4, 5], [6], [7, 8]); //=> [21, 22, 22, 23, 22, 23, 23, 24]
*/
var lift = _curry1(function lift(fn) {
return liftN(fn.length, fn);
});
/**
* Creates a new function that, when invoked, caches the result of calling `fn` for a given
* argument set and returns the result. Subsequent calls to the memoized `fn` with the same
* argument set will not result in an additional call to `fn`; instead, the cached result
* for that set of arguments will be returned.
*
* @func
* @memberOf R
* @category Function
* @sig (*... -> a) -> (*... -> a)
* @param {Function} fn The function to memoize.
* @return {Function} Memoized version of `fn`.
* @example
*
* var count = 0;
* var factorial = R.memoize(function(n) {
* count += 1;
* return R.product(R.range(1, n + 1));
* });
* factorial(5); //=> 120
* factorial(5); //=> 120
* factorial(5); //=> 120
* count; //=> 1
*/
var memoize = _curry1(function memoize(fn) {
var cache = {};
return function () {
var key = toString(arguments);
if (!_has(key, cache)) {
cache[key] = fn.apply(this, arguments);
}
return cache[key];
};
});
/**
* Reasonable analog to SQL `select` statement.
*
* @func
* @memberOf R
* @category Object
* @category Relation
* @sig [k] -> [{k: v}] -> [{k: v}]
* @param {Array} props The property names to project
* @param {Array} objs The objects to query
* @return {Array} An array of objects with just the `props` properties.
* @example
*
* var abby = {name: 'Abby', age: 7, hair: 'blond', grade: 2};
* var fred = {name: 'Fred', age: 12, hair: 'brown', grade: 7};
* var kids = [abby, fred];
* R.project(['name', 'grade'], kids); //=> [{name: 'Abby', grade: 2}, {name: 'Fred', grade: 7}]
*/
// passing `identity` gives correct arity
var project = useWith(_map, pickAll, identity);
/**
* Wraps a constructor function inside a curried function that can be called with the same
* arguments and returns the same type.
*
* @func
* @memberOf R
* @category Function
* @sig (* -> {*}) -> (* -> {*})
* @param {Function} Fn The constructor function to wrap.
* @return {Function} A wrapped, curried constructor function.
* @example
*
* // Constructor function
* var Widget = function(config) {
* // ...
* };
* Widget.prototype = {
* // ...
* };
* var allConfigs = [
* // ...
* ];
* R.map(R.construct(Widget), allConfigs); // a list of Widgets
*/
var construct = _curry1(function construct(Fn) {
return constructN(Fn.length, Fn);
});
var R = {
F: F,
T: T,
__: __,
add: add,
addIndex: addIndex,
adjust: adjust,
all: all,
allPass: allPass,
always: always,
and: and,
any: any,
anyPass: anyPass,
ap: ap,
aperture: aperture,
append: append,
apply: apply,
arity: arity,
assoc: assoc,
assocPath: assocPath,
binary: binary,
bind: bind,
both: both,
call: call,
chain: chain,
clone: clone,
commute: commute,
commuteMap: commuteMap,
comparator: comparator,
complement: complement,
compose: compose,
composeL: composeL,
composeP: composeP,
concat: concat,
cond: cond,
construct: construct,
constructN: constructN,
contains: contains,
containsWith: containsWith,
converge: converge,
countBy: countBy,
createMapEntry: createMapEntry,
curry: curry,
curryN: curryN,
dec: dec,
defaultTo: defaultTo,
difference: difference,
differenceWith: differenceWith,
dissoc: dissoc,
dissocPath: dissocPath,
divide: divide,
drop: drop,
dropRepeats: dropRepeats,
dropRepeatsWith: dropRepeatsWith,
dropWhile: dropWhile,
either: either,
empty: empty,
eq: eq,
eqDeep: eqDeep,
eqProps: eqProps,
equals: equals,
evolve: evolve,
filter: filter,
filterIndexed: filterIndexed,
find: find,
findIndex: findIndex,
findLast: findLast,
findLastIndex: findLastIndex,
flatten: flatten,
flip: flip,
forEach: forEach,
forEachIndexed: forEachIndexed,
fromPairs: fromPairs,
functions: functions,
functionsIn: functionsIn,
groupBy: groupBy,
gt: gt,
gte: gte,
has: has,
hasIn: hasIn,
head: head,
identical: identical,
identity: identity,
ifElse: ifElse,
inc: inc,
indexOf: indexOf,
init: init,
insert: insert,
insertAll: insertAll,
intersection: intersection,
intersectionWith: intersectionWith,
intersperse: intersperse,
into: into,
invert: invert,
invertObj: invertObj,
invoke: invoke,
invoker: invoker,
is: is,
isArrayLike: isArrayLike,
isEmpty: isEmpty,
isNil: isNil,
isSet: isSet,
join: join,
keys: keys,
keysIn: keysIn,
last: last,
lastIndexOf: lastIndexOf,
length: length,
lens: lens,
lensIndex: lensIndex,
lensOn: lensOn,
lensProp: lensProp,
lift: lift,
liftN: liftN,
lt: lt,
lte: lte,
map: map,
mapAccum: mapAccum,
mapAccumRight: mapAccumRight,
mapIndexed: mapIndexed,
mapObj: mapObj,
mapObjIndexed: mapObjIndexed,
match: match,
mathMod: mathMod,
max: max,
maxBy: maxBy,
mean: mean,
median: median,
memoize: memoize,
merge: merge,
mergeAll: mergeAll,
min: min,
minBy: minBy,
modulo: modulo,
multiply: multiply,
nAry: nAry,
negate: negate,
none: none,
not: not,
nth: nth,
nthArg: nthArg,
nthChar: nthChar,
nthCharCode: nthCharCode,
of: of,
omit: omit,
once: once,
or: or,
partial: partial,
partialRight: partialRight,
partition: partition,
path: path,
pathEq: pathEq,
pick: pick,
pickAll: pickAll,
pickBy: pickBy,
pipe: pipe,
pipeL: pipeL,
pipeP: pipeP,
pluck: pluck,
prepend: prepend,
product: product,
project: project,
prop: prop,
propEq: propEq,
propOr: propOr,
props: props,
range: range,
reduce: reduce,
reduceIndexed: reduceIndexed,
reduceRight: reduceRight,
reduceRightIndexed: reduceRightIndexed,
reduced: reduced,
reject: reject,
rejectIndexed: rejectIndexed,
remove: remove,
repeat: repeat,
replace: replace,
reverse: reverse,
scan: scan,
slice: slice,
sort: sort,
sortBy: sortBy,
split: split,
strIndexOf: strIndexOf,
strLastIndexOf: strLastIndexOf,
substring: substring,
substringFrom: substringFrom,
substringTo: substringTo,
subtract: subtract,
sum: sum,
tail: tail,
take: take,
takeWhile: takeWhile,
tap: tap,
test: test,
times: times,
toLower: toLower,
toPairs: toPairs,
toPairsIn: toPairsIn,
toString: toString,
toUpper: toUpper,
transduce: transduce,
trim: trim,
type: type,
unapply: unapply,
unary: unary,
uncurryN: uncurryN,
unfold: unfold,
union: union,
unionWith: unionWith,
uniq: uniq,
uniqWith: uniqWith,
unnest: unnest,
update: update,
useWith: useWith,
values: values,
valuesIn: valuesIn,
where: where,
whereEq: whereEq,
wrap: wrap,
xprod: xprod,
zip: zip,
zipObj: zipObj,
zipWith: zipWith
};
/* TEST_ENTRY_POINT */
if (true) {
module.exports = R;
} else if (typeof define === 'function' && define.amd) {
define(function() { return R; });
} else {
this.R = R;
}
}.call(this));
/***/ },
/* 2 */
/***/ function(module, exports, __webpack_require__) {
var _equals = __webpack_require__(1).equals;
module.exports = {
baseMap: function(f) {
return f(this.value);
},
getEquals: function(constructor) {
return function equals(that) {
return that instanceof constructor && _equals(this.value, that.value);
};
},
extend: function(Child, Parent) {
function Ctor() {
this.constructor = Child;
}
Ctor.prototype = Parent.prototype;
Child.prototype = new Ctor();
Child.super_ = Parent.prototype;
},
identity: function(x) { return x; },
notImplemented: function(str) {
return function() {
throw new Error(str + ' is not implemented');
};
},
notCallable: function(fn) {
return function() {
throw new Error(fn + ' cannot be called directly');
};
},
returnThis: function() { return this; }
};
/***/ },
/* 3 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
var util = __webpack_require__(2);
function Either(left, right) {
switch (arguments.length) {
case 0:
throw new TypeError('no arguments to Either');
case 1:
return function(right) {
return right == null ? Either.Left(left) : Either.Right(right);
};
default:
return right == null ? Either.Left(left) : Either.Right(right);
}
}
Either.prototype.map = util.returnThis;
Either.of = Either.prototype.of = function(value) {
return Either.Right(value);
};
Either.prototype.chain = util.returnThis; // throw?
Either.equals = Either.prototype.equals = util.getEquals(Either);
// Right
function _Right(x) {
this.value = x;
}
util.extend(_Right, Either);
_Right.prototype.map = function(fn) {
return new _Right(fn(this.value));
};
_Right.prototype.ap = function(that) {
return that.map(this.value);
};
_Right.prototype.chain = function(f) {
return f(this.value);
};
_Right.prototype.bimap = function(_, f) {
return new _Right(f(this.value));
};
_Right.prototype.extend = function(f) {
return new _Right(f(this));
};
_Right.prototype.toString = function() {
return 'Either.Right(' + R.toString(this.value) + ')';
};
Either.Right = function(value) {
return new _Right(value);
};
// Left
function _Left(x) {
this.value = x;
}
util.extend(_Left, Either);
_Left.prototype.ap = function(that) { return that; };
_Left.prototype.bimap = function(f) {
return new _Left(f(this.value));
};
_Left.prototype.extend = util.returnThis;
_Left.prototype.toString = function() {
return 'Either.Left(' + R.toString(this.value) + ')';
};
Either.Left = function(value) {
return new _Left(value);
};
module.exports = Either;
/***/ },
/* 4 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
// `f` is a function that takes two function arguments: `reject` (failure) and `resolve` (success)
function Future(f) {
if (!(this instanceof Future)) {
return new Future(f);
}
this.fork = f;
}
// functor
Future.prototype.map = function(f) {
return this.chain(function(a) { return Future.of(f(a)); });
};
// apply
Future.prototype.ap = function(m) {
var self = this;
return new Future(function(rej, res) {
var applyFn, val;
var doReject = R.once(rej);
function resolveIfDone() {
if (applyFn != null && val != null) {
return res(applyFn(val));
}
}
self.fork(doReject, function(fn) {
applyFn = fn;
resolveIfDone();
});
m.fork(doReject, function(v) {
val = v;
resolveIfDone();
});
});
};
// applicative
Future.of = function(x) {
// should include a default rejection?
return new Future(function(_, resolve) { return resolve(x); });
};
Future.prototype.of = Future.of;
// chain
// f must be a function which returns a value
// f must return a value of the same Chain
// chain must return a value of the same Chain
Future.prototype.chain = function(f) { // Sorella's:
return new Future(function(reject, resolve) {
return this.fork(function(a) { return reject(a); },
function(b) { return f(b).fork(reject, resolve); });
}.bind(this));
};
// monad
// A value that implements the Monad specification must also implement the Applicative and Chain specifications.
// see above.
Future.prototype.bimap = function(errFn, successFn) {
var self = this;
return new Future(function(reject, resolve) {
self.fork(function(err) {
reject(errFn(err));
}, function(val) {
resolve(successFn(val));
});
});
};
Future.reject = function(val) {
return new Future(function(reject) {
reject(val);
});
};
Future.prototype.toString = function() {
return 'Future(' + R.toString(this.fork) + ')';
};
module.exports = Future;
/***/ },
/* 5 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
module.exports = IO;
var compose = R.compose;
function IO(fn) {
if (!(this instanceof IO)) {
return new IO(fn);
}
this.fn = fn;
}
// `f` must return an IO
IO.prototype.chain = function(f) {
var io = this;
return new IO(function() {
return f(io.fn()).fn();
});
};
IO.prototype.map = function(f) {
var io = this;
return new IO(compose(f, io.fn));
};
// `this` IO must wrap a function `f` that takes an IO (`thatIo`) as input
// `f` must return an IO
IO.prototype.ap = function(thatIo) {
return this.chain(function(f) {
return thatIo.map(f);
});
};
IO.runIO = function(io) {
return io.runIO.apply(io, [].slice.call(arguments, 1));
};
IO.prototype.runIO = function() {
return this.fn.apply(this, arguments);
};
IO.prototype.of = function(x) {
return new IO(function() { return x; });
};
IO.of = IO.prototype.of;
// this is really only to accommodate testing ....
IO.prototype.equals = function(that) {
return this === that ||
this.fn === that.fn ||
R.equals(IO.runIO(this), IO.runIO(that));
};
IO.prototype.toString = function() {
return 'IO(' + R.toString(this.fn) + ')';
};
/***/ },
/* 6 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
var util = __webpack_require__(2);
/**
* A data type that holds a value and exposes a monadic api.
*/
/**
* Constructs a new `Identity[a]` data type that holds a single
* value `a`.
* @param {*} a Value of any type
* @sig a -> Identity[a]
*/
function Identity(x) {
if (!(this instanceof Identity)) {
return new Identity(x);
}
this.value = x;
}
/**
* Applicative specification. Creates a new `Identity[a]` holding the value `a`.
* @param {*} a Value of any type
* @returns Identity[a]
* @sig a -> Identity[a]
*/
Identity.of = function(x) {
return new Identity(x);
};
Identity.prototype.of = Identity.of;
/**
* Functor specification. Creates a new `Identity[a]` mapping function `f` onto
* `a` returning any value b.
* @param {Function} f Maps `a` to any value `b`
* @returns Identity[b]
* @sig @Identity[a] => (a -> b) -> Identity[b]
*/
Identity.prototype.map = function(f) {
return new Identity(f(this.value));
};
/**
* Apply specification. Applies the function inside the `Identity[a]`
* type to another applicative type.
* @param {Applicative[a]} app Applicative that will apply its function
* @returns Applicative[b]
* @sig (Identity[a -> b], f: Applicative[_]) => f[a] -> f[b]
*/
Identity.prototype.ap = function(app) {
return app.map(this.value);
};
/**
* Chain specification. Transforms the value of the `Identity[a]`
* type using an unary function to monads. The `Identity[a]` type
* should contain a function, otherwise an error is thrown.
*
* @param {Function} fn Transforms `a` into a `Monad[b]`
* @returns Monad[b]
* @sig (Identity[a], m: Monad[_]) => (a -> m[b]) -> m[b]
*/
Identity.prototype.chain = function(fn) {
return fn(this.value);
};
/**
* Returns the value of `Identity[a]`
*
* @returns a
* @sig (Identity[a]) => a
*/
Identity.prototype.get = function() {
return this.value;
};
// equality method to enable testing
Identity.prototype.equals = util.getEquals(Identity);
Identity.prototype.toString = function() {
return 'Identity(' + R.toString(this.value) + ')';
};
module.exports = Identity;
/***/ },
/* 7 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
var util = __webpack_require__(2);
function Maybe(x) {
return x == null ? _nothing : Maybe.Just(x);
}
function _Just(x) {
this.value = x;
}
util.extend(_Just, Maybe);
function _Nothing() {}
util.extend(_Nothing, Maybe);
var _nothing = new _Nothing();
Maybe.Nothing = function() {
return _nothing;
};
Maybe.Just = function(x) {
return new _Just(x);
};
Maybe.of = Maybe.Just;
Maybe.prototype.of = Maybe.Just;
Maybe.isJust = function(x) {
return x instanceof _Just;
};
Maybe.isNothing = function(x) {
return x === _nothing;
};
// functor
_Just.prototype.map = function(f) {
return this.of(f(this.value));
};
_Nothing.prototype.map = util.returnThis;
// apply
// takes a Maybe that wraps a function (`app`) and applies its `map`
// method to this Maybe's value, which must be a function.
_Just.prototype.ap = function(m) {
return m.map(this.value);
};
_Nothing.prototype.ap = util.returnThis;
// applicative
// `of` inherited from `Maybe`
// chain
// f must be a function which returns a value
// f must return a value of the same Chain
// chain must return a value of the same Chain
_Just.prototype.chain = util.baseMap;
_Nothing.prototype.chain = util.returnThis;
//
_Just.prototype.datatype = _Just;
_Nothing.prototype.datatype = _Nothing;
// monad
// A value that implements the Monad specification must also implement the Applicative and Chain specifications.
// see above.
// equality method to enable testing
_Just.prototype.equals = util.getEquals(_Just);
_Nothing.prototype.equals = function(that) {
return that === _nothing;
};
Maybe.prototype.isNothing = function() {
return this === _nothing;
};
Maybe.prototype.isJust = function() {
return this instanceof _Just;
};
_Just.prototype.getOrElse = function() {
return this.value;
};
_Nothing.prototype.getOrElse = function(a) {
return a;
};
_Just.prototype.toString = function() {
return 'Maybe.Just(' + R.toString(this.value) + ')';
};
_Nothing.prototype.toString = function() {
return 'Maybe.Nothing()';
};
module.exports = Maybe;
/***/ },
/* 8 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
function Reader(run) {
if (!(this instanceof Reader)) {
return new Reader(run);
}
this.run = run;
}
Reader.run = function(reader) {
return reader.run.apply(reader, [].slice.call(arguments, 1));
};
Reader.prototype.chain = function(f) {
var reader = this;
return new Reader(function(r) {
return f(reader.run(r)).run(r);
});
};
Reader.prototype.ap = function(a) {
return this.chain(function(f) {
return a.map(f);
});
};
Reader.prototype.map = function(f) {
return this.chain(function(a) {
return Reader.of(f(a));
});
};
Reader.prototype.of = function(a) {
return new Reader(function() {
return a;
});
};
Reader.of = Reader.prototype.of;
Reader.ask = Reader(function(a) {
return a;
});
Reader.prototype.equals = function(that) {
return this === that ||
this.run === that.run ||
R.equals(Reader.run(this), Reader.run(that));
};
Reader.prototype.toString = function() {
return 'Reader(' + R.toString(this.run) + ')';
};
module.exports = Reader;
/***/ },
/* 9 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
function Tuple(x, y) {
switch (arguments.length) {
case 0:
throw new TypeError('no arguments to Tuple');
case 1:
return function(y) {
return new _Tuple(x, y);
};
default:
return new _Tuple(x, y);
}
}
function _Tuple(x, y) {
this[0] = x;
this[1] = y;
this.length = 2;
}
function ensureConcat(xs) {
xs.forEach(function(x) {
if (typeof x.concat != 'function') {
throw new TypeError(R.toString(x) + ' must be a semigroup to perform this operation');
}
});
}
Tuple.of = function(x) {
return Tuple(x, x);
};
Tuple.fst = function(x) {
return x[0];
};
Tuple.snd = function(x) {
return x[1];
};
_Tuple.prototype.of = function(x) {
return Tuple(this[0], x);
};
// semigroup
_Tuple.prototype.concat = function(x) {
ensureConcat([this[0], this[1]]);
return Tuple(this[0].concat(x[0]), this[1].concat(x[1]));
};
// functor
_Tuple.prototype.map = function(f) {
return Tuple(this[0], f(this[1]));
};
// apply
_Tuple.prototype.ap = function(m) {
ensureConcat([this[0]]);
return Tuple(this[0].concat(m[0]), this[1](m[1]));
};
// setoid
_Tuple.prototype.equals = function(that) {
return that instanceof _Tuple && R.equals(this[0], that[0]) && R.equals(this[1], that[1]);
};
_Tuple.prototype.toString = function() {
return 'Tuple(' + R.toString(this[0]) + ', ' + R.toString(this[1]) + ')';
};
module.exports = Tuple;
/***/ },
/* 10 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
module.exports = R.curryN(3, function liftA2(f, a1, a2) {
return a1.map(f).ap(a2);
});
/***/ },
/* 11 */
/***/ function(module, exports, __webpack_require__) {
var R = __webpack_require__(1);
module.exports = R.curryN(4, function liftA2(f, a1, a2, a3) {
return a1.map(f).ap(a2).ap(a3);
});
/***/ }
/******/ ])
});
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment