Skip to content

Instantly share code, notes, and snippets.

@alexgian
Created June 14, 2018 03:40
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save alexgian/db6fa9a1c1d140f4efd0d2cfd6825a6b to your computer and use it in GitHub Desktop.
Save alexgian/db6fa9a1c1d140f4efd0d2cfd6825a6b to your computer and use it in GitHub Desktop.
JACAL's polynomial routines (Aubrey Jaffer-MIT)
;; JACAL: Symbolic Mathematics System. -*-scheme-*-
;; Copyright 1989, 1990, 1991, 1992, 1993, 1995, 1997 Aubrey Jaffer.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or (at
;; your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
;;;Functions which operate on polynomials as polynomials
;;;have prefix POLY:
;;;Functions which operate on polynomials with the same major variable
;;;have prefix UNIV:
;;;Functions which operate on scalar coefficients
;;;have prefix COEF:
(require 'modular)
(require 'common-list-functions)
;;; *MODULUS* (defined in "toploads.scm") is the modulus for the
;;; coefficient ring used by polynomials. It gets dynamically bound
;;; using FLUID-LET.
;;(proclaim '(optimize (speed 3) (compilation-speed 0)))
(define (coef:invertable? k) (modular:invertable? *modulus* k))
(define (coef:invert j) (modular:invert *modulus* j))
(define (poly:0? n) (eqv? 0 n))
(define (poly:1? n) (eqv? 1 n))
(define (divides? a b) (zero? (remainder b a)))
(define (sign a) (if (negative? a) -1 1))
;;; poly is the internal workhorse data type in the form
;;; of numeric or list (var coeff0 coeff1 ...)
;;; where var is a variable and coeffn is the coefficient of var^n.
;;; coeffn is poly. The variables are arranged reverse alphabetically
;;; with z higher order than A.
(define (univ:one? p var)
(if (not (eqv? (car p) var)) (jacal:found-bug 'expecting var 'univ p))
(and (= (length p) 2) (= (cadr p) 1)))
(define (univ:zero? p)
(and (= (length p) 2) (zero? (cadr p))))
(define (univ:const? p)
(and (= (length p) 2) (number? (cadr p)) (cadr p)))
;;; Degree of already normalized p
(define (univ:deg p)
(- (length p) 2))
;;; Return a polynomial in variable v if given a number, otherwise
;;; returns its first argument.
(define (number->poly a v)
(if (number? a) (list v a) a))
(define (poly:find-var? poly var)
(poly:find-var-if? poly (lambda (x) (eqv? var x))))
(define (poly:find-var-if? poly proc)
(cond ((number? poly) #f)
((proc (car poly)))
(else (some (lambda (x) (poly:find-var-if? x proc)) (cdr poly)))))
;;; This can call proc more than once per var
(define (poly:for-each-var proc poly)
(cond ((number? poly))
(else
(proc (car poly))
(for-each (lambda (b) (poly:for-each-var proc b))
(cdr poly)))))
;;;POLY:VARS returns a list of all vars used in POLY
(define (poly:vars poly)
(let ((elts '()))
(poly:for-each-var (lambda (v) (set! elts (adjoin v elts))) poly)
elts))
(define (poly:total-degree poly)
(if (number? poly)
0
(do ((lst (cdr poly) (cdr lst))
(tdg 0 (+ 1 tdg))
(mxdg 0 (max mxdg (+ tdg (poly:total-degree (car lst))))))
((null? lst) mxdg))))
(define (poly:poly? p)
(and (pair? p) (poly:var? (car p))))
(define (poly:univariate? p)
(and (poly:poly? p) (every number? (cdr p))))
(define (poly:multivariate? p)
(and (poly:poly? p) (not (every number? (cdr p)))))
;;;; the following functions are for internal use on the poly data type
;;; this normalizes short polys.
(define (univ:norm0 var col)
(cond ((null? col) 0)
((null? (cdr col)) (car col))
(else (cons var col))))
(define (map-no-end-0s proc l)
(if (null? l)
l
(let ((first (proc (car l)))
(rest (map-no-end-0s proc (cdr l))))
(if (and (null? rest) (eqv? 0 first))
rest
(cons first rest)))))
(define (map2c-no-end-0s proc l1 l2)
(cond ((null? l1) l2)
((null? l2) l1)
(else
(let ((first (proc (car l1) (car l2)))
(rest (map2c-no-end-0s proc (cdr l1) (cdr l2))))
(if (and (null? rest) (eqv? 0 first))
rest
(cons first rest))))))
(define (ipow-by-squaring x n acc proc)
(cond ((zero? n) acc)
((eqv? 1 n) (proc acc x))
(else (ipow-by-squaring (proc x x)
(quotient n 2)
(if (even? n) acc (proc acc x))
proc))))
(define (poly:add-scalar scalar p2)
(if (zero? scalar) p2
(poly:add-const scalar p2)))
(define (poly:add-const term p2)
(cons (car p2) (cons (poly:+ term (cadr p2)) (cddr p2))))
(define (poly:+ p1 p2)
(cond ((and (number? p1) (number? p2)) (modular:+ *modulus* p1 p2))
((number? p1) (poly:add-scalar p1 p2))
((number? p2) (poly:add-scalar p2 p1))
((eq? (car p1) (car p2))
(univ:norm0 (car p1) (map2c-no-end-0s poly:+ (cdr p1) (cdr p2))))
((var:> (car p2) (car p1)) (poly:add-const p1 p2))
(else (poly:add-const p2 p1))))
(define (univ:+ p1 p2)
(cons (car p1) (map2c-no-end-0s poly:+ (cdr p1) (cdr p2))))
;;; UNIV:* is called from POLY:*. If *MODULUS* has 0-divisors, an
;;; unnormalized polynomial may be returned (leading 0 coefficients).
(define (univ:* p1 p2)
(let ((res (make-list (+ (length (cdr p1)) (length (cdr p2)) -1) 0)))
(do ((rpl res (cdr rpl))
(a (cdr p1) (cdr a)))
((null? a) (cons (car p1) res))
(do ((b (cdr p2) (cdr b))
(rp rpl (cdr rp)))
((null? b))
(set-car! rp (poly:+ (poly:* (car a) (car b)) (car rp)))))))
(define (poly:times-scalar scalar p2)
(cond ((zero? scalar) 0)
((eqv? 1 scalar) p2)
(else (poly:times-const scalar p2))))
(define (poly:times-const term p2)
(cons (car p2) (map (lambda (x) (poly:* term x)) (cdr p2))))
(define (poly:* p1 p2)
(cond ((and (number? p1) (number? p2)) (modular:* *modulus* p1 p2))
((number? p1) (poly:times-scalar p1 p2))
((number? p2) (poly:times-scalar p2 p1))
((eq? (car p1) (car p2)) (univ:* p1 p2))
((var:> (car p2) (car p1)) (poly:times-const p1 p2))
(else (poly:times-const p2 p1))))
(define (poly:negate p) (poly:* -1 p))
(define (poly:- p1 p2) (poly:+ p1 (poly:negate p2)))
;;; Divide coefficients by a scalar
(define (univ/scalar a c)
(cons (car a) (map (lambda (x) (quotient x c)) (cdr a))))
(define (univ:/? u v)
(let ((r (list->vector (cdr u)))
(m (length (cddr u)))
(n (length (cddr v)))
(vn (univ:lc v))
(q '()))
(do ((k (- m n) (+ -1 k))
(qk (poly:/? (vector-ref r m) vn)
(and (> k 0) (poly:/? (vector-ref r (+ n k -1)) vn))))
((not qk)
(and (< k 0)
(do ((k (+ -2 n) (+ -1 k)))
((or (< k 0) (not (poly:0? (vector-ref r k))))
(< k 0)))
(univ:norm0 (car u) q)))
(set! q (cons qk q))
(let ((qk- (poly:negate qk)))
(do ((j (+ n k -1) (+ -1 j)))
((< j k))
(vector-set! r j (poly:+
(vector-ref r j)
(poly:* (list-ref v (+ (- j k) 1)) qk-))))))))
;;; POLY:/? returns U / V if V divides U, otherwise returns #f
(define (poly:/? u v)
(cond ((equal? u v) 1)
((eqv? 0 u) 0)
((number? v)
(cond ((poly:0? v) #f)
;;; ((unit? v) (poly:* u v))
((coef:invertable? v) (poly:* u (coef:invert v)))
((number? u) (and (divides? v u) (quotient u v)))
(else (univ:/? u (const:promote (car u) v)))))
((number? u) #f)
((eq? (car u) (car v)) (univ:/? u v))
((var:> (car u) (car v))
(univ:/? u (const:promote (car u) v)))
(else #f)))
(define (univ:/ dividend divisor)
(or (univ:/? dividend divisor)
(math:error divisor 'does-not-udivide- dividend)))
(define (poly:/ dividend divisor)
(or (poly:/? dividend divisor)
(math:error divisor 'does-not-divide- dividend)))
(define (univ:monomial coeff n var)
(cond ((eqv? 0 coeff) 0)
((>= 0 n) coeff)
(else
(cons var
((lambda (x) (set-car! (last-pair x) coeff) x)
(make-list (+ 1 n) 0))))))
(define (poly:degree p var)
(cond ((number? p) 0)
((eq? var (car p)) (length (cddr p)))
((var:> var (car p)) 0)
(else (reduce-init (lambda (m c) (max m (poly:degree c var)))
0
(cdr p)))))
(define (poly:leading-coeff p var) (poly:coeff p var (poly:degree p var)))
(define (poly:^ x n)
(if (number? x)
(expt x n) ; (ipow-by-squaring x n 1 *)
(ipow-by-squaring x n 1 poly:*)))
;;;; Routines used in normalizing IMPL polynomials
(define (univ:lc p)
(car (last-pair p)))
(define (leading-number p)
(if (number? p) p (leading-number (univ:lc p))))
;;; This canonicalizes polys with respect to units by forcing the
;;; numerical coefficient of a certain term to always be positive. In
;;; the case of finite field coefficients, the polynomial is made
;;; monic.
(define (unitcan p)
(cond ((zero? *modulus*)
(if (negative? (leading-number p)) (poly:negate p) p))
((number? p)
(math:warn 'unitcan 'of p)
p)
(else (univ:make-monic p))))
(define (shorter? x y) (< (length x) (length y)))
(define (univ:degree p var)
(if (or (number? p) (not (eq? (car p) var))) 0 (length (cddr p))))
;;; THE NEXT SEVERAL ROUTINES FOR SUBRESULTANT GCD ASSUME THAT THE
;;; ARGUMENTS ARE POLYNOMIALS WITH THE SAME MAJOR VARIABLE. THESE TWO
;;; ROUTINES ASSUME THAT THE FIRST ARGUMENT IS OF GREATER OR EQUAL
;;; ORDER THAN THE SECOND.
;;; These algorithms taken from:
;;; Knuth, D. E.,
;;; The Art Of Computer Programming, Vol. 2: Seminumerical Algorithms,
;;; Addison Wesley, Reading, MA 1969.
;;; Pseudo Remainder
;;; This returns a list of the pseudo quotient and pseudo remainder.
(define (univ:pdiv u v)
(let* ((r (list->vector (cdr u)))
(m (length (cddr u)))
(n (length (cddr v)))
(vn (univ:lc v))
(q (make-vector (+ (- m n) 1) 1)))
(do ((tt (- (- m n) 1) (+ -1 tt))
(k 1 (+ 1 k))
(vnp 1))
((< tt 0))
(set! vnp (poly:* vnp vn))
(vector-set! q k vnp)
(vector-set! r tt (poly:* (vector-ref r tt) vnp)))
(do ((k (- m n) (+ -1 k))
(rnk 0))
((< k 0))
(set! rnk (poly:negate (vector-ref r (+ n k))))
(do ((j (+ n k -1) (+ -1 j)))
((< j k))
(vector-set! r j (poly:+ (poly:* (vector-ref r j) vn)
(poly:* (list-ref v (+ (- j k) 1)) rnk)))))
(list
(do ((k (- m n) (+ -1 k))
(end '() (cons (poly:* (vector-ref r (+ n k))
(vector-ref q k)) end)))
((zero? k) (univ:norm0 (car u) (cons (vector-ref r n) end))))
(do ((j (+ -1 n) (+ -1 j))
(end '()))
((< j 0) (univ:norm0 (car u) end))
(if (not (and (null? end) (eqv? 0 (vector-ref r j))))
(set! end (cons (vector-ref r j) end)))))))
;;; POLY:PDIV returns a list of the pseudo-quotient and pseudo-remainder
(define (poly:pdiv dividend divisor var)
(let ((pd1 (poly:degree dividend var))
(pd2 (poly:degree divisor var)))
(cond ((< pd1 pd2) (list 0 dividend))
((zero? (+ pd1 pd2))
(list (quotient dividend divisor) (remainder dividend divisor)))
((zero? pd1) (list 0 dividend))
((zero? pd2)
;;; This should work but doesn't.
;;; (map univ:demote (univ:pdiv (poly:promote var dividend)
;;; (const:promote var divisor)))
(list 0 dividend))
(else
(map univ:demote (univ:pdiv (poly:promote var dividend)
(poly:promote var divisor)))))))
(define (poly:prem dividend divisor var)
(let ((pd1 (poly:degree dividend var))
(pd2 (poly:degree divisor var)))
(cond ((< pd1 pd2) dividend)
((zero? (+ pd1 pd2)) (remainder dividend divisor))
((zero? pd1) dividend)
((zero? pd2)
;;; Does this work?
;;; (univ:demote (univ:prem (poly:promote var dividend)
;;; (const:promote var divisor)))
dividend)
(else
(univ:demote (univ:prem (poly:promote var dividend)
(poly:promote var divisor)))))))
(define (univ:prem u v)
(let* ((r (list->vector (cdr u)))
(m (length (cddr u)))
(n (length (cddr v)))
(vn (univ:lc v)))
(do ((k (- (- m n) 1) (+ -1 k))
(vnp 1))
((< k 0))
(set! vnp (poly:* vnp vn))
(vector-set! r k (poly:* (vector-ref r k) vnp)))
(do ((k (- m n) (+ -1 k))
(rnk 0))
((< k 0))
(set! rnk (poly:negate (vector-ref r (+ n k))))
(do ((j (+ n k -1) (+ -1 j)))
((< j k))
(vector-set! r j (poly:+ (poly:* (vector-ref r j) vn)
(poly:* (list-ref v (+ (- j k) 1)) rnk)))))
(do ((j (+ -1 n) (+ -1 j))
(end '()))
((< j 0) (univ:norm0 (car u) end))
(if (and (null? end) (eqv? 0 (vector-ref r j)))
#f
(set! end (cons (vector-ref r j) end))))))
;;; Pseudo Remainder Sequence
(define (univ:prs u v)
(let ((var (car u))
(g 1)
(h 1)
(delta 0))
(do ((r (univ:prem u v) (univ:prem u v)))
((eqv? 0 (univ:degree r var))
(if (eqv? 0 r) v r))
(set! delta (- (univ:degree u var) (univ:degree v var)))
(set! u v)
(set! v (univ:/ r (const:promote (car r) (poly:* g (poly:^ h delta)))))
(set! g (univ:lc u))
(set! h (cond ((eqv? 1 delta) g)
((zero? delta) h)
(else (poly:/ (poly:^ g delta)
(poly:^ h (+ -1 delta)))))))))
(define (univ:gcd u v)
(let* ((cu (univ:cont u))
(cv (univ:cont v))
(c (poly:gcd cu cv))
(ppu (poly:/ u cu))
(ppv (poly:/ v cv))
(ans (if (shorter? ppv ppu)
(univ:prs ppu ppv)
(univ:prs ppv ppu))))
(if (zero? (univ:degree ans (car u)))
c
(poly:* c (univ:primpart ans)))))
(define (poly:gcd p1 p2)
(cond ((equal? p1 p2) p1)
((and (number? p1) (number? p2)) (gcd p1 p2))
((number? p1) (if (poly:0? p1) p2 (apply poly:gcd* p1 (cdr p2))))
((number? p2) (if (poly:0? p2) p1 (apply poly:gcd* p2 (cdr p1))))
((eq? (car p1) (car p2))
(cond ((zero? *modulus*) (univ:gcd p1 p2))
(else (univ:fgcd p1 p2))))
((var:> (car p2) (car p1)) (apply poly:gcd* p1 (cdr p2)))
(else (apply poly:gcd* p2 (cdr p1)))))
(define (poly:gcd* . li)
(let ((nums (remove-if-not number? li)))
(if (null? nums)
(reduce poly:gcd li)
(let ((gnum (reduce gcd nums)))
(if (= 1 gnum) 1
(reduce-init poly:gcd gnum (remove-if number? li)))))))
(define (univ:cont p) (apply poly:gcd* (cdr p)))
(define (univ:primpart p) (poly:/ p (univ:cont p)))
(define (poly:num-cont p)
(if (number? p)
p
(do ((l (cdr p) (cdr l))
(n (poly:num-cont (cadr p))
(gcd n (poly:num-cont (cadr l)))))
((or (= 1 n) (null? (cdr l))) n))))
(define (poly:primpart p) (poly:/ p (poly:num-cont p)))
;;; Returns the sign of the leading coefficient of univariate poly p
(define (u:unitz p) (sign (univ:lc p)))
;;; Returns the sign of the leading coefficient of the polynomial p.
(define (poly:unitz p var)
(sign (leading-number (poly:leading-coeff p var))))
(define (poly:primative? poly var)
(unit? (apply poly:gcd* (cdr (poly:promote var poly)))))
(define (u:primz p)
(univ/scalar p (* (u:unitz p) (univ:cont p))))
;;; Primitive part of a multivariate polynomial p, with respect to var.
(define (poly:primz p var)
(if (number? p)
(abs p)
(unitcan (poly:/ p (univ:cont p)))))
(define (list-ref? l n)
(cond ((null? l) #f)
((zero? n) (car l))
(else (list-ref? (cdr l) (+ -1 n)))))
(define (univ:coeff p ord) (or (list-ref? (cdr p) ord) 0))
(define (poly:coeff p var ord)
(cond ((or (number? p) (var:> var (car p)))
(if (zero? ord) p 0))
((eq? var (car p)) (univ:coeff p ord))
(else
(univ:norm0 (car p)
(map-no-end-0s (lambda (c) (poly:coeff c var ord))
(cdr p))))))
(define (poly:subst0 old e) (poly:coeff e old 0))
(define const:promote list)
(define (poly:promote var p)
(if (eq? var (car p))
p
(let ((dgr (poly:degree p var)))
(do ((i dgr (+ -1 i))
(ol (list (poly:coeff p var dgr))
(cons (poly:coeff p var (+ -1 i)) ol)))
((zero? i) (cons var ol))))))
;;;this is bummed if v has higher priority than any variable in (cdr p)
(define (univ:demote p)
(if (number? p)
p
(let ((v (car p)))
(if (every (lambda (cof) (or (number? cof) (var:> v (car cof))))
(cdr p))
p
(poly:+ (cadr p)
(do ((trms (cddr p) (cdr trms))
(sum 0)
(mon (list v 0 1) (cons v (cons 0 (cdr mon)))))
((null? trms) sum)
(set! sum (poly:+ sum (poly:* mon (car trms))))))))))
(define (poly:cabs p)
(cond ((number? p) (abs p))
((poly:find-var? p %i)
(^ (apply poly:+
(map (lambda (x) (poly:* x x))
(cdr (poly:promote %i p))))
_1/2))
(else (deferop _abs p))))
(define (poly:valid? p)
(if (number? p) #t
(let ((var (car p)))
(every (lambda (q) (poly:valid1 q var))
(cdr p)))))
(define (poly:valid1 p var)
(cond ((number? p) #t)
((var:> var (car p)) (every (lambda (p) (poly:valid1 p var))
(cdr p)))
(else
(display-diag "poly:valid detected that ")
(math:print var)
(display-diag " <= some var in ")
(math:print p)
(newline-diag)
#f)))
(define (sylvester p1 p2 var)
(set! p1 (poly:promote var p1))
(set! p2 (poly:promote var p2))
(let ((d1 (univ:degree p1 var))
(d2 (univ:degree p2 var))
(m (list)))
(do ((i d1 (+ -1 i))
(row (nconc (make-list (+ -1 d1) 0) (reverse (cdr p2)))
(append (cdr row) (list 0))))
((<= i 1) (set! m (cons row m)))
(set! m (cons row m)))
(do ((i d2 (+ -1 i))
(row (nconc (make-list (+ -1 d2) 0) (reverse (cdr p1)))
(append (cdr row) (list 0))))
((<= i 1) (set! m (cons row m)))
(set! m (cons row m)))
m))
;;; Bareiss's integer preserving gaussian elimination.
;;; Bareiss, E.H.: Sylvester's identity and multistep
;;; integer-preserving Gaussian elimination. Mathematics of
;;; Computation 22, 565-578, 1968.
;;; as related by:
;;; Akritas, A.G.: Exact Algorithms for the Matrix-Triangulation
;;; Subresultant PRS Method. Computers and Mathematics, 145-155.
;;; Springer Verlag, 1989.
(define (bareiss m)
4)
(define (poly:resultant p1 p2 var)
(let ((u1 (poly:promote var p1))
(u2 (poly:promote var p2)))
(or (not (zero? (univ:degree u1 var)))
(not (zero? (univ:degree u2 var)))
(math:error var 'does-not-appear-in- p1 'or- p2))
(let ((res (cond ((zero? (univ:degree u1 var)) p1)
((zero? (univ:degree u2 var)) p2)
((shorter? u1 u2) (univ:prs u2 u1))
(else (univ:prs u1 u2)))))
(if (zero? (univ:degree res var)) res
0))))
(define (poly:elim2 p1 p2 var)
(cond (math:trace
(display-diag "eliminating: ")
(display-diag (var:sexp var))
(display-diag " from:")
(newline-diag)
(let ((grm (get-grammar 'standard)))
(math:write (poleqn->licit p1) grm)
(math:write (poleqn->licit p2) grm))))
(let* ((u1 (poly:promote var p1))
(u2 (poly:promote var p2))
(pg (poly:gcd (univ:lc u1) (univ:lc u2))))
(or (not (zero? (univ:degree u1 var)))
(not (zero? (univ:degree u2 var)))
(math:error var 'does-not-appear-in- p1 'or- p2))
(let* ((res (cond ((zero? (univ:degree u1 var)) p1)
((zero? (univ:degree u2 var)) p2)
((shorter? u1 u2) (univ:prs u2 u1))
(else (univ:prs u1 u2))))
(e (if (zero? (univ:degree res var)) res 0)))
(set! res (if (number? pg)
e
(let ((q (poly:/ e pg)))
(if (number? q) e (univ:primpart q)))))
(cond (math:trace (display-diag 'yielding:)
(newline-diag)
(math:write res (get-grammar 'standard))))
res)))
(define (poly:modularize modulus poly)
(if (number? poly)
(modular:normalize modulus poly)
(let ((coeffs (map-no-end-0s (lambda (x) (poly:modularize modulus x))
(cdr poly))))
(if (null? coeffs) 0 (cons (car poly) coeffs)))))
;;;; UNIV:F routines for polynomials with (finite) field coefficients.
;;; This returns a list of the quotient and remainder.
;;; After Knuth Vol 2. 4.6.1 Algorithm D.
(define (univ:fdiv u v)
(let* ((r (list->vector (cdr u)))
(m (length (cddr u)))
(n (length (cddr v)))
(vni (coef:invert (univ:lc v)))
(q '()))
(do ((k (- m n) (+ -1 k))
(rnk 0))
((< k 0))
(set! q (cons (poly:* vni (vector-ref r (+ n k))) q))
(set! rnk (poly:negate (car q)))
(do ((j (+ n k -1) (+ -1 j)))
((< j k))
(vector-set! r j (poly:+ (vector-ref r j)
(poly:* (list-ref v (+ (- j k) 1)) rnk)))))
(list (univ:norm0 (car u) q)
(do ((j (+ -1 n) (+ -1 j))
(end '()))
((< j 0) (univ:norm0 (car u) end))
(if (and (null? end) (eqv? 0 (vector-ref r j)))
#f
(set! end (cons (vector-ref r j) end)))))))
(define (univ:frem u v)
(let* ((r (list->vector (cdr u)))
(m (length (cddr u)))
(n (length (cddr v)))
(vni (poly:negate (coef:invert (univ:lc v)))))
(do ((k (- m n) (+ -1 k))
(rnk 0))
((< k 0))
(set! rnk (poly:* vni (vector-ref r (+ n k))))
(do ((j (+ n k -1) (+ -1 j)))
((< j k))
(vector-set! r j (poly:+ (vector-ref r j)
(poly:* (list-ref v (+ (- j k) 1)) rnk)))))
(do ((j (+ -1 n) (+ -1 j))
(end '()))
((< j 0) (univ:norm0 (car u) end))
(if (and (null? end) (eqv? 0 (vector-ref r j)))
#f
(set! end (cons (vector-ref r j) end))))))
;;; Remainder Sequence for Polynomials with a Coefficient Field
(define (univ:frs u v)
(let ((var (car u)))
(do ((r (univ:frem u v) (univ:frem u v)))
((eqv? 0 (univ:degree r var))
(if (eqv? 0 r) v r))
(set! u v)
(set! v r))))
(define (univ:fgcd u v)
(let* ((ans (if (shorter? v u)
(univ:frs u v)
(univ:frs v u))))
(if (zero? (univ:degree ans (car u)))
1 ; (list (car u) 1)
(univ:make-monic ans))))
(define (univ:make-monic p)
(poly:* p (coef:invert (univ:lc p))))
;;;; VERIFICATION TESTS
(define (poly:test)
(define a (sexp->var 'a))
(define b (sexp->var 'b))
(define c (sexp->var 'c))
(define x (sexp->var 'x))
(define y (sexp->var 'y))
(test (list a 0 -2)
poly:gcd
(list a 0 -2)
(list a 0 0 -2))
(test (list x (list a 0 1) 1)
poly:gcd
(list x (list a 0 0 -1) 0 1)
(list x (list a 0 0 1) (list a 0 2) 1))
(test (list x 0 (list a 0 1))
poly:gcd
(list x 0 (list a 0 0 1))
(list x 0 0 (list a 0 1)))
(test (list x (list b 0 0 1) 0 (list b 1 2) (list a 0 1) 1)
poly:resultant
(list y (list x (list b 0 1) 0 1) (list x 0 1))
(list y (list x 1 (list a 0 1)) 0 1)
y)
(test (list y (list b 0 0 1) 0 (list b 1 2) (list a 0 1) 1)
poly:resultant
(list y (list b 0 1) (list x 0 1) 1)
(list y (list x 1 0 1) (list a 0 1))
x)
(cond ((provided? 'bignum)
(test 1
poly:gcd
(list x -5 2 8 -3 -3 1 1)
(list x 21 -9 -4 5 3))
(test 1
poly:gcd
(list x -5 2 8 -3 -3 0 1 0 1)
(list x 21 -9 -4 0 5 0 3))))
'done)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment