Here we want to scrape product name, price and rating from ebay product pages:
url = 'https://www.ebay.com/itm/Sony-PlayStation-4-PS4-Pro-1TB-4K-Console-Black/203084236670'
wanted_list = ['Sony PlayStation 4 PS4 Pro 1TB 4K Console - Black', 'US $349.99', '4.8']
scraper.build(url, wanted_list)
The items which we wanted have been on multiple sections of the page and the scraper tries to catch them all. So it may retrieve some extra information compared to what we have in mind. Let's run it on a different page:
scraper.get_result_exact('https://www.ebay.com/itm/Acer-Predator-Helios-300-15-6-144Hz-FHD-Laptop-i7-9750H-16GB-512GB-GTX-1660-Ti/114183725523')
The result:
[
"Acer Predator Helios 300 15.6'' 144Hz FHD Laptop i7-9750H 16GB 512GB GTX 1660 Ti",
'ACER Predator Helios 300 i7-9750H 15.6" 144Hz FHD GTX 1660Ti 16GB 512GB SSD⚡RGB',
'US $1,229.49',
'5.0'
]
As we can see we have one extra item here. We can run the get_result_exact
or get_result_similar
method with grouped=True
parameter. It will group all results per its scraping rule:
scraper.get_result_exact('https://www.ebay.com/itm/Acer-Predator-Helios-300-15-6-144Hz-FHD-Laptop-i7-9750H-16GB-512GB-GTX-1660-Ti/114183725523', grouped=True)
Output:
{
'rule_sks3': ["Acer Predator Helios 300 15.6'' 144Hz FHD Laptop i7-9750H 16GB 512GB GTX 1660 Ti"],
'rule_d4n5': ['ACER Predator Helios 300 i7-9750H 15.6" 144Hz FHD GTX 1660Ti 16GB 512GB SSD⚡RGB'],
'rule_fmrm': ['ACER Predator Helios 300 i7-9750H 15.6" 144Hz FHD GTX 1660Ti 16GB 512GB SSD⚡RGB'],
'rule_2ydq': ['US $1,229.49'],
'rule_buhw': ['5.0'],
'rule_vpfp': ['5.0']
}
Now we can use keep_rules
or remove_rules
methods to prune unwanted rules:
scraper.keep_rules(['rule_sks3', 'rule_2ydq', 'rule_buhw'])
scraper.get_result_exact('https://www.ebay.com/itm/Acer-Predator-Helios-300-15-6-144Hz-FHD-Laptop-i7-9750H-16GB-512GB-GTX-1660-Ti/114183725523')
And now the result only contains the ones which we want:
[
"Acer Predator Helios 300 15.6'' 144Hz FHD Laptop i7-9750H 16GB 512GB GTX 1660 Ti",
'US $1,229.49',
'5.0'
]
Suppose we want to make a price scraper to work with multiple websites. Here we consider ebay.com, walmart.com and etsy.com.
We create some sample data for each website and then feed it to the scraper. By using update=True
parameter when calling the build
method, all previously learned rules will be kept and new rules will be added to them:
from autoscraper import AutoScraper
data = [
# some Ebay examples
('https://www.ebay.com/itm/Sony-PlayStation-4-PS4-Pro-1TB-4K-Console-Black/193632846009', ['US $349.99']),
('https://www.ebay.com/itm/Acer-Predator-Helios-300-15-6-FHD-Gaming-Laptop-i7-10750H-16GB-512GB-RTX-2060/303669272117', ['US $1,369.00']),
('https://www.ebay.com/itm/8-TAC-FORCE-SPRING-ASSISTED-FOLDING-STILETTO-TACTICAL-KNIFE-Blade-Pocket-Open/331625445801', ['US $8.95']),
#some Walmart examples
('https://www.walmart.com/ip/8mm-Classic-Sterling-Silver-Plain-Wedding-Band-Ring/113651182', ['US $8.95']),
('https://www.walmart.com/ip/Apple-iPhone-11-64GB-Red-Fully-Unlocked-A-Grade-Refurbished/806414606', ['$659.99']),
#some Etsy examples
('https://www.etsy.com/listing/805075149/starstruck-silk-face-mask-black-silk', ['$12.50+']),
('https://www.etsy.com/listing/851553172/apple-macbook-pro-i9-32gb-500gb-radeon', ['$1,500.00']),
]
scraper = AutoScraper()
for url, wanted_list in data:
scraper.build(url=url, wanted_list=wanted_list, update=True)
Now hopefully the scraper has learned to scrape all 3 websites. Let's check some new pages:
>>> scraper.get_result_exact('https://www.ebay.com/itm/PUMA-Mens-Turino-Sneakers/274324387149')
['US $24.99', "PUMA Men's Turino Sneakers | eBay"]
>>> scraper.get_result_exact('https://www.walmart.com/ip/Pack-of-8-Gerber-1st-Foods-Baby-Food-Peach-2-2-oz-Tubs/267133209')
['$8.71', '(Pack of 8) Gerber 1st Foods Baby Food, Peach, 2-2 oz Tubs - Walmart.com']
>>> scraper.get_result_exact('https://www.etsy.com/listing/863615551/matte-black-smart-wireless-bluetooth')
['$60.00']
Almost done! But's there's some extra info, let's fix it:
>>> scraper.get_result_exact('https://www.walmart.com/ip/Pack-of-8-Gerber-1st-Foods-Baby-Food-Peach-2-2-oz-Tubs/267133209', grouped=True)
{'rule_cqhs': [],
'rule_h4sy': [],
'rule_jqtb': [],
'rule_r9qd': ['$8.71'],
'rule_6lt7': ['$8.71'],
'rule_2nrk': ['$8.71'],
'rule_wy9j': ['$8.71'],
'rule_v395': [],
'rule_4ej6': ['(Pack of 8) Gerber 1st Foods Baby Food, Peach, 2-2 oz Tubs - Walmart.com']}
>>> scraper.remove_rules(['rule_4ej6'])
>>> scraper.get_result_exact('https://www.ebay.com/itm/PUMA-Mens-Turino-Sneakers/274324387149')
['US $24.99']
>>> scraper.get_result_exact('https://www.walmart.com/ip/Pack-of-8-Gerber-1st-Foods-Baby-Food-Peach-2-2-oz-Tubs/267133209')
['$8.71']
>>> scraper.get_result_exact('https://www.etsy.com/listing/863615551/matte-black-smart-wireless-bluetooth')
['$60.00']
Now we have a scraper which works with Ebay, Walmart and Etsy!
Some websites use different tag values for different pages (like different styles for the same element). In these cases you can adjust attr_fuzz_ratio
parameter when getting the results. See this issue for a sample usage.
You can use regular expressions for wanted items:
wanted_list = [re.compile('Lorem ipsum.+est laborum')]
Is there an example of passing an HTML tag into the build method?