Last active
December 12, 2022 08:35
-
-
Save alreadydone/c2dd40c087ccf69de8461eb76d5091b4 to your computer and use it in GitHub Desktop.
Prove that functions that are zero at infinity are uniformly continuous, using filters.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import topology.uniform_space.basic | |
import topology.homeomorph | |
open_locale topological_space uniformity filter | |
open filter uniform_space set | |
variables {α β : Type*} [uniform_space α] [uniform_space β] | |
lemma is_compact.nhds_set_diagonal₁ {α} [uniform_space α] {s : set α} (hs : is_compact s) : | |
𝓝ˢ ((λ x, (x, x)) '' s) = 𝓤 α ⊓ 𝓝ˢ (prod.fst ⁻¹' s) := | |
begin | |
apply le_antisymm, | |
{ refine le_inf ((nhds_set_mono _).trans nhds_set_diagonal_le_uniformity) (nhds_set_mono _); | |
rintros p ⟨x, hx, rfl⟩, exacts [rfl, hx] }, | |
have := (𝓤 α).basis_sets.prod_self.comap _, | |
rw ← uniformity_prod_eq_comap_prod at this, | |
refine ((hs.image $ by continuity).nhds_set_basis_uniformity this).ge_iff.2 (λ U hU, _), | |
obtain ⟨V, hV, hVU⟩ := comp_mem_uniformity_sets hU, | |
rw mem_inf_iff_superset, | |
refine ⟨V, hV, prod.fst ⁻¹' (⋃ y ∈ s, ball y V), mem_nhds_set_iff_forall.2 _, _⟩, | |
{ rintro ⟨x, y⟩ (hx : x ∈ s), | |
apply continuous_fst.continuous_at.preimage_mem_nhds, | |
exact mem_of_superset (ball_mem_nhds _ hV) (subset_bUnion_of_mem hx) }, | |
{ rintro ⟨x, y⟩ ⟨h, h'⟩, obtain ⟨z, hz, hp⟩ := mem_Union₂.1 h', | |
refine mem_Union₂.2 ⟨_, ⟨z, hz, rfl⟩, hVU ⟨z, _, _⟩, hVU ⟨x, _, _⟩⟩, | |
exacts [refl_mem_uniformity hV, hp, hp, h] }, | |
end | |
lemma is_compact.nhds_set_diagonal₂ {s : set α} (hs : is_compact s) : | |
𝓝ˢ ((λ x, (x, x)) '' s) = 𝓤 α ⊓ 𝓝ˢ (prod.snd ⁻¹' s) := | |
begin | |
rw ← comap_swap_uniformity, | |
convert congr_arg (filter.comap $ prod.swap) hs.nhds_set_diagonal₁; | |
nth_rewrite 0 (homeomorph.prod_comm α α).inducing.nhds_set_eq_comap, | |
congr' 2, { ext, rw image_image, refl }, | |
rw filter.comap_inf, congr, | |
rw [← homeomorph.coe_to_equiv, equiv.image_eq_preimage, preimage_preimage], refl, | |
end | |
lemma filter.le_of_inf_principal_compl_le {f g : filter α} | |
(h : ∀ s ∈ g, f ⊓ 𝓟 sᶜ ≤ g) : f ≤ g := | |
λ t ht, by simpa only [mem_inf_principal', compl_compl, union_self] using h t ht ht | |
lemma continuous.uniform_continuous_of_zero_at_infty {f : α → β} [has_zero β] | |
(h_cont : continuous f) (h_zero : tendsto f (cocompact α) (𝓝 0)) : uniform_continuous f := | |
map_le_iff_le_comap.2 $ filter.le_of_inf_principal_compl_le $ λ s hs, begin | |
have := h_zero.prod_map h_zero, | |
rw [← nhds_prod_eq, tendsto, map_le_iff_le_comap] at this, | |
obtain ⟨t, ht, hts⟩ := has_basis_cocompact.prod_self.mem_iff.1 | |
(this $ comap_mono (nhds_le_uniformity _) hs), | |
have : 𝓟 sᶜ ≤ 𝓝ˢ (prod.fst ⁻¹' t ∪ prod.snd ⁻¹' t) := | |
principal_le_nhds_set.trans (nhds_set_mono $ λ x hx, _), swap, | |
{ rw mem_union, contrapose! hx, exact λ h, h (hts hx) }, | |
apply (inf_le_inf_left _ this).trans, | |
rw [nhds_set_union, inf_sup_left, ← ht.nhds_set_diagonal₁, ← ht.nhds_set_diagonal₂, sup_idem], | |
refine Sup_le (λ F, _), | |
rintro ⟨_, ⟨x, hx, rfl⟩, rfl⟩, | |
rw ← map_le_iff_le_comap, | |
exact le_trans (h_cont.prod_map h_cont).continuous_at (nhds_le_uniformity _), | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment