Skip to content

Instantly share code, notes, and snippets.

@alsrgv
Created September 30, 2017 02:33
Show Gist options
  • Save alsrgv/63c173f2d0773eff2365a79fd4e98c41 to your computer and use it in GitHub Desktop.
Save alsrgv/63c173f2d0773eff2365a79fd4e98c41 to your computer and use it in GitHub Desktop.
Keras with Horovod
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import tensorflow as tf
import horovod.tensorflow as hvd
# Initialize Horovod.
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))
batch_size = 128
num_classes = 10
# Adjust number of epochs based on number of GPUs.
epochs = 12 / hvd.size()
# Input image dimensions
img_rows, img_cols = 28, 28
# The data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# Adjust learning rate based on number of GPUs (naive approach).
opt = tf.train.AdadeltaOptimizer(1.0 * hvd.size())
# Add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.TFOptimizer(opt),
metrics=['accuracy'])
# Broadcast variables from rank 0 to all other processes.
K.get_session().run(hvd.broadcast_global_variables(0))
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment