Skip to content

Instantly share code, notes, and snippets.

@alstat
Last active December 22, 2015 13:19
import numpy as np
# Initial Guess
w_old = np.array([0, 0]).reshape((2,1))
w_new = np.array([-1.8,-.8]).reshape((2,1))
gamma = .0002 # set the learning rate
nu = .00001 # set the precision
def f1_primew1(w1, w2):
return -2 * (1 - w1) - 400 * (w2 - w1**2) * w1
def f1_primew2(w1, w2):
return 200 * (w2 - w1**2)
# Gradient Vector
def g_vec(w1, w2):
return np.array([f1_primew1(w1, w2), f1_primew2(w1, w2)]).reshape((2,1))
# Perform Gradient Descent
r = 0
while np.linalg.norm(w_old - w_new) > nu:
w_old = w_new
w_new = w_old - gamma * g_vec(w_old[0,:], w_old[1,:])
r = r + 1
print r
print w_new
# OUTPUT
23374
[[ 0.94648413]
[ 0.89561108]]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment