This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def recommend_hotel(location, description): | |
description = description.lower() | |
word_tokenize(description) | |
stop_words = stopwords.words('english') | |
lemm = WordNetLemmatizer() | |
filtered = {word for word in description if not word in stop_words} | |
filtered_set = set() | |
for fs in filtered: | |
filtered_set.add(lemm.lemmatize(fs)) | |
country = data[data['countries']==location.lower()] | |
country = country.set_index(np.arange(country.shape[0])) | |
list1 = []; list2 = []; cos = []; | |
for i in range(country.shape[0]): | |
temp_token = word_tokenize(country["Tags"][i]) | |
temp_set = [word for word in temp_token if not word in stop_words] | |
temp2_set = set() | |
for s in temp_set: | |
temp2_set.add(lemm.lemmatize(s)) | |
vector = temp2_set.intersection(filtered_set) | |
cos.append(len(vector)) | |
country['similarity']=cos | |
country = country.sort_values(by='similarity', ascending=False) | |
country.drop_duplicates(subset='Hotel_Name', keep='first', inplace=True) | |
country.sort_values('Average_Score', ascending=False, inplace=True) | |
country.reset_index(inplace=True) | |
return country[["Hotel_Name", "Average_Score", "Hotel_Address"]].head() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment