-
-
Save amiltonwong/4e1b779c657c410e3a6dc4fa1967b50d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
python main.py --phase test --n_blocks 28 --block res --pretrained_model ../../pretrained_models/modelnet_cls/ModelNet40-dense-edge-n14-C64-k9-drop0.5-lr0.001_B32_best_model.pth --data_dir /media/root/WDdata/dataset/modelnet40_dataset | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_qint8 = np.dtype([("qint8", np.int8, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_quint8 = np.dtype([("quint8", np.uint8, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_qint16 = np.dtype([("qint16", np.int16, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_quint16 = np.dtype([("quint16", np.uint16, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_qint32 = np.dtype([("qint32", np.int32, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
np_resource = np.dtype([("resource", np.ubyte, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_qint8 = np.dtype([("qint8", np.int8, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_quint8 = np.dtype([("quint8", np.uint8, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_qint16 = np.dtype([("qint16", np.int16, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_quint16 = np.dtype([("quint16", np.uint16, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
_np_qint32 = np.dtype([("qint32", np.int32, 1)]) | |
/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. | |
np_resource = np.dtype([("resource", np.ubyte, 1)]) | |
2020-11-13 16:56:52,988 saving log, checkpoint and back up code in folder: log | |
2020-11-13 16:56:52,988 ========== args ============= | |
2020-11-13 16:56:52,988 exp_name:DeepGCN | |
2020-11-13 16:56:52,988 root_dir:log | |
2020-11-13 16:56:52,989 data_dir:/media/root/WDdata/dataset/modelnet40_dataset | |
2020-11-13 16:56:52,989 num_points:1024 | |
2020-11-13 16:56:52,989 augment:True | |
2020-11-13 16:56:52,989 phase:test | |
2020-11-13 16:56:52,989 use_cpu:False | |
2020-11-13 16:56:52,989 batch_size:8 | |
2020-11-13 16:56:52,989 epochs:400 | |
2020-11-13 16:56:52,989 use_sgd:True | |
2020-11-13 16:56:52,989 weight_decay:0.0001 | |
2020-11-13 16:56:52,989 lr:0.001 | |
2020-11-13 16:56:52,989 seed:1 | |
2020-11-13 16:56:52,989 multi_gpus:False | |
2020-11-13 16:56:52,989 test_batch_size:8 | |
2020-11-13 16:56:52,989 pretrained_model:../../pretrained_models/modelnet_cls/ModelNet40-dense-edge-n14-C64-k9-drop0.5-lr0.001_B32_best_model.pth | |
2020-11-13 16:56:52,989 k:9 | |
2020-11-13 16:56:52,989 block:res | |
2020-11-13 16:56:52,989 conv:edge | |
2020-11-13 16:56:52,989 act:relu | |
2020-11-13 16:56:52,989 norm:batch | |
2020-11-13 16:56:52,989 bias:True | |
2020-11-13 16:56:52,989 n_blocks:28 | |
2020-11-13 16:56:52,989 n_filters:64 | |
2020-11-13 16:56:52,989 in_channels:3 | |
2020-11-13 16:56:52,989 out_channels:40 | |
2020-11-13 16:56:52,989 emb_dims:1024 | |
2020-11-13 16:56:52,990 dropout:0.5 | |
2020-11-13 16:56:52,990 use_dilation:True | |
2020-11-13 16:56:52,990 epsilon:0.2 | |
2020-11-13 16:56:52,990 stochastic:True | |
2020-11-13 16:56:52,990 device:cuda | |
2020-11-13 16:56:52,990 exp_dir:log | |
2020-11-13 16:56:52,990 loglevel:info | |
2020-11-13 16:56:52,990 ========== args END ============= | |
2020-11-13 16:56:52,990 | |
2020-11-13 16:56:52,990 ===> Phase is test. | |
2020-11-13 16:56:53,042 ===> Creating dataloader ... | |
2020-11-13 16:56:56,547 ===> Loading ModelNet40 from /media/root/WDdata/dataset/modelnet40_dataset. number of classes equal to 40 | |
2020-11-13 16:56:56,547 ===> Loading the network ... | |
2020-11-13 16:57:06,063 ===> loading pre-trained ... | |
2020-11-13 16:57:06,913 ===> Loading checkpoint '../../pretrained_models/modelnet_cls/ModelNet40-dense-edge-n14-C64-k9-drop0.5-lr0.001_B32_best_model.pth' | |
Traceback (most recent call last): | |
File "main.py", line 170, in <module> | |
model, opt.best_value, opt.epoch = load_pretrained_models(model, opt.pretrained_model, opt.phase) | |
File "/data/code13/deep_gcns_torch/examples/modelnet_cls/../../utils/ckpt_util.py", line 67, in load_pretrained_models | |
model.load_state_dict(ckpt_model_state_dict) | |
File "/root2/anaconda3/envs/deepgcn/lib/python3.7/site-packages/torch/nn/modules/module.py", line 830, in load_state_dict | |
self.__class__.__name__, "\n\t".join(error_msgs))) | |
RuntimeError: Error(s) in loading state_dict for DeepGCN: | |
Missing key(s) in state_dict: "backbone.13.body.gconv.nn.0.weight", "backbone.13.body.gconv.nn.0.bias", "backbone.13.body.gconv.nn.2.weight", "backbone.13.body.gconv.nn.2.bias", "backbone.13.body.gconv.nn.2.running_mean", "backbone.13.body.gconv.nn.2.running_var", "backbone.14.body.gconv.nn.0.weight", "backbone.14.body.gconv.nn.0.bias", "backbone.14.body.gconv.nn.2.weight", "backbone.14.body.gconv.nn.2.bias", "backbone.14.body.gconv.nn.2.running_mean", "backbone.14.body.gconv.nn.2.running_var", "backbone.15.body.gconv.nn.0.weight", "backbone.15.body.gconv.nn.0.bias", "backbone.15.body.gconv.nn.2.weight", "backbone.15.body.gconv.nn.2.bias", "backbone.15.body.gconv.nn.2.running_mean", "backbone.15.body.gconv.nn.2.running_var", "backbone.16.body.gconv.nn.0.weight", "backbone.16.body.gconv.nn.0.bias", "backbone.16.body.gconv.nn.2.weight", "backbone.16.body.gconv.nn.2.bias", "backbone.16.body.gconv.nn.2.running_mean", "backbone.16.body.gconv.nn.2.running_var", "backbone.17.body.gconv.nn.0.weight", "backbone.17.body.gconv.nn.0.bias", "backbone.17.body.gconv.nn.2.weight", "backbone.17.body.gconv.nn.2.bias", "backbone.17.body.gconv.nn.2.running_mean", "backbone.17.body.gconv.nn.2.running_var", "backbone.18.body.gconv.nn.0.weight", "backbone.18.body.gconv.nn.0.bias", "backbone.18.body.gconv.nn.2.weight", "backbone.18.body.gconv.nn.2.bias", "backbone.18.body.gconv.nn.2.running_mean", "backbone.18.body.gconv.nn.2.running_var", "backbone.19.body.gconv.nn.0.weight", "backbone.19.body.gconv.nn.0.bias", "backbone.19.body.gconv.nn.2.weight", "backbone.19.body.gconv.nn.2.bias", "backbone.19.body.gconv.nn.2.running_mean", "backbone.19.body.gconv.nn.2.running_var", "backbone.20.body.gconv.nn.0.weight", "backbone.20.body.gconv.nn.0.bias", "backbone.20.body.gconv.nn.2.weight", "backbone.20.body.gconv.nn.2.bias", "backbone.20.body.gconv.nn.2.running_mean", "backbone.20.body.gconv.nn.2.running_var", "backbone.21.body.gconv.nn.0.weight", "backbone.21.body.gconv.nn.0.bias", "backbone.21.body.gconv.nn.2.weight", "backbone.21.body.gconv.nn.2.bias", "backbone.21.body.gconv.nn.2.running_mean", "backbone.21.body.gconv.nn.2.running_var", "backbone.22.body.gconv.nn.0.weight", "backbone.22.body.gconv.nn.0.bias", "backbone.22.body.gconv.nn.2.weight", "backbone.22.body.gconv.nn.2.bias", "backbone.22.body.gconv.nn.2.running_mean", "backbone.22.body.gconv.nn.2.running_var", "backbone.23.body.gconv.nn.0.weight", "backbone.23.body.gconv.nn.0.bias", "backbone.23.body.gconv.nn.2.weight", "backbone.23.body.gconv.nn.2.bias", "backbone.23.body.gconv.nn.2.running_mean", "backbone.23.body.gconv.nn.2.running_var", "backbone.24.body.gconv.nn.0.weight", "backbone.24.body.gconv.nn.0.bias", "backbone.24.body.gconv.nn.2.weight", "backbone.24.body.gconv.nn.2.bias", "backbone.24.body.gconv.nn.2.running_mean", "backbone.24.body.gconv.nn.2.running_var", "backbone.25.body.gconv.nn.0.weight", "backbone.25.body.gconv.nn.0.bias", "backbone.25.body.gconv.nn.2.weight", "backbone.25.body.gconv.nn.2.bias", "backbone.25.body.gconv.nn.2.running_mean", "backbone.25.body.gconv.nn.2.running_var", "backbone.26.body.gconv.nn.0.weight", "backbone.26.body.gconv.nn.0.bias", "backbone.26.body.gconv.nn.2.weight", "backbone.26.body.gconv.nn.2.bias", "backbone.26.body.gconv.nn.2.running_mean", "backbone.26.body.gconv.nn.2.running_var". | |
size mismatch for backbone.1.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.2.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 384, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.3.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 512, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.4.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.5.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 768, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.6.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 896, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.7.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.8.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 1152, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.9.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.10.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 1408, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.11.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 1536, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for backbone.12.body.gconv.nn.0.weight: copying a param with shape torch.Size([64, 1664, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). | |
size mismatch for fusion_block.0.weight: copying a param with shape torch.Size([1024, 6720, 1, 1]) from checkpoint, the shape in current model is torch.Size([1024, 1792, 1, 1]). | |
(deepgcn) root@milton-ThinkCentre-M93p:/data/code13/deep_gcns_torch/examples/modelnet_cls# |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment