Skip to content

Instantly share code, notes, and snippets.

@aminechraibi
Created September 7, 2022 16:41
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save aminechraibi/24593ae794058c5bceab937568d632a9 to your computer and use it in GitHub Desktop.
Save aminechraibi/24593ae794058c5bceab937568d632a9 to your computer and use it in GitHub Desktop.
Convert python contains single class to java with errors must be fixed by you
from __future__ import print_function, unicode_literals
import ast
import os
import sys
import tokenize
import six
from six import StringIO
# Large float and imaginary literals get turned into infinities in the AST.
# We unparse those infinities to INFSTR.
from src.utils.str_utils import camel_case
INFSTR = "1e" + repr(sys.float_info.max_10_exp + 1)
def interleave(inter, f, seq):
"""Call f on each item in seq, calling inter() in between.
"""
seq = iter(seq)
try:
f(next(seq))
except StopIteration:
pass
else:
for x in seq:
inter()
f(x)
class JavaUnparser:
"""Methods in this class recursively traverse an AST and
output source code for the abstract syntax; original formatting
is disregarded. """
def __init__(self, tree, file=sys.stdout):
"""Unparser(tree, file=sys.stdout) -> None.
Print the source for tree to file."""
self.f = file
self.future_imports = []
self._indent = 0
self.dispatch(tree)
print("", file=self.f)
self.f.flush()
def fill(self, text=""):
"Indent a piece of text, according to the current indentation level"
self.f.write("\n" + " " * self._indent + text)
def write(self, text):
"Append a piece of text to the current line."
self.f.write(six.text_type(text))
def enter(self):
"Print ':', and increase the indentation."
self.write(" {")
self._indent += 1
def leave(self):
"Decrease the indentation level."
self._indent -= 1
self.fill("}")
def dispatch(self, tree):
"Dispatcher function, dispatching tree type T to method _T."
if isinstance(tree, list):
for t in tree:
self.dispatch(t)
return
meth = getattr(self, "_" + tree.__class__.__name__)
meth(tree)
############### Unparsing methods ######################
# There should be one method per concrete grammar type #
# Constructors should be grouped by sum type. Ideally, #
# this would follow the order in the grammar, but #
# currently doesn't. #
########################################################
def _Module(self, tree):
for stmt in tree.body:
self.dispatch(stmt)
def _Interactive(self, tree):
for stmt in tree.body:
self.dispatch(stmt)
def _Expression(self, tree):
self.dispatch(tree.body)
# stmt
def _Expr(self, tree):
self.fill()
self.dispatch(tree.value)
self.write(";")
def _NamedExpr(self, tree):
self.write("(")
self.dispatch(tree.target)
self.write(" := ")
self.dispatch(tree.value)
self.write(")")
def _Import(self, t):
self.fill("import ")
interleave(lambda: self.write(", "), self.dispatch, t.names)
def _ImportFrom(self, t):
# A from __future__ import may affect unparsing, so record it.
if t.module and t.module == '__future__':
self.future_imports.extend(n.name for n in t.names)
self.fill("from ")
self.write("." * t.level)
if t.module:
self.write(t.module)
self.write(" import ")
interleave(lambda: self.write(", "), self.dispatch, t.names)
def _Assign(self, t):
self.fill()
for target in t.targets:
self.dispatch(target)
self.write(" = ")
self.dispatch(t.value)
self.write(";")
def _AugAssign(self, t):
self.fill()
self.dispatch(t.target)
self.write(" " + self.binop[t.op.__class__.__name__] + "= ")
self.dispatch(t.value)
self.write(";")
def _AnnAssign(self, t):
self.fill()
if not t.simple and isinstance(t.target, ast.Name):
self.write('(')
self.dispatch(t.target)
if not t.simple and isinstance(t.target, ast.Name):
self.write(')')
self.write(": ")
self.dispatch(t.annotation)
if t.value:
self.write(" = ")
self.dispatch(t.value)
def _Return(self, t):
self.fill("return")
if t.value:
self.write(" ")
self.dispatch(t.value)
self.write(";")
def _Pass(self, t):
self.fill("")
def _Break(self, t):
self.fill("break;")
def _Continue(self, t):
self.fill("continue;")
def _Delete(self, t):
self.fill("del ")
interleave(lambda: self.write(", "), self.dispatch, t.targets)
def _Assert(self, t):
self.fill("assert ")
self.dispatch(t.test)
if t.msg:
self.write(", ")
self.dispatch(t.msg)
def _Exec(self, t):
self.fill("exec ")
self.dispatch(t.body)
if t.globals:
self.write(" in ")
self.dispatch(t.globals)
if t.locals:
self.write(", ")
self.dispatch(t.locals)
def _Print(self, t):
self.fill("print ")
do_comma = False
if t.dest:
self.write(">>")
self.dispatch(t.dest)
do_comma = True
for e in t.values:
if do_comma:
self.write(", ")
else:
do_comma = True
self.dispatch(e)
if not t.nl:
self.write(",")
def _Global(self, t):
self.fill("global ")
interleave(lambda: self.write(", "), self.write, t.names)
def _Nonlocal(self, t):
self.fill("nonlocal ")
interleave(lambda: self.write(", "), self.write, t.names)
def _Await(self, t):
self.write("(")
self.write("await")
if t.value:
self.write(" ")
self.dispatch(t.value)
self.write(")")
def _Yield(self, t):
self.write("(")
self.write("yield")
if t.value:
self.write(" ")
self.dispatch(t.value)
self.write(")")
def _YieldFrom(self, t):
self.write("(")
self.write("yield from")
if t.value:
self.write(" ")
self.dispatch(t.value)
self.write(")")
def _Raise(self, t):
self.fill("throw")
if six.PY3:
if not t.exc:
assert not t.cause
return
self.write(" ")
self.dispatch(t.exc)
if t.cause:
self.write(" from ")
self.dispatch(t.cause)
else:
self.write(" ")
if t.type:
self.dispatch(t.type)
if t.inst:
self.write(", ")
self.dispatch(t.inst)
if t.tback:
self.write(", ")
self.dispatch(t.tback)
self.write(";")
def _Try(self, t):
self.fill("try")
self.enter()
self.dispatch(t.body)
self.leave()
for ex in t.handlers:
self.dispatch(ex)
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
if t.finalbody:
self.fill("finally")
self.enter()
self.dispatch(t.finalbody)
self.leave()
def _TryExcept(self, t):
self.fill("try")
self.enter()
self.dispatch(t.body)
self.leave()
for ex in t.handlers:
self.dispatch(ex)
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _TryFinally(self, t):
if len(t.body) == 1 and isinstance(t.body[0], ast.TryExcept):
# try-except-finally
self.dispatch(t.body)
else:
self.fill("try")
self.enter()
self.dispatch(t.body)
self.leave()
self.fill("finally")
self.enter()
self.dispatch(t.finalbody)
self.leave()
def _ExceptHandler(self, t):
self.fill("except")
if t.type:
self.write(" ")
self.dispatch(t.type)
if t.name:
self.write(" as ")
if six.PY3:
self.write(t.name)
else:
self.dispatch(t.name)
self.enter()
self.dispatch(t.body)
self.leave()
def _ClassDef(self, t):
self.write("\n")
for deco in t.decorator_list:
self.fill("@")
self.dispatch(deco)
self.fill("class " + t.name)
if six.PY3:
self.write("(")
comma = False
for e in t.bases:
if comma:
self.write(", ")
else:
comma = True
self.dispatch(e)
for e in t.keywords:
if comma:
self.write(", ")
else:
comma = True
self.dispatch(e)
if sys.version_info[:2] < (3, 5):
if t.starargs:
if comma:
self.write(", ")
else:
comma = True
self.write("*")
self.dispatch(t.starargs)
if t.kwargs:
if comma:
self.write(", ")
else:
comma = True
self.write("**")
self.dispatch(t.kwargs)
self.write(")")
elif t.bases:
self.write("(")
for a in t.bases:
self.dispatch(a)
self.write(", ")
self.write(")")
self.enter()
self.dispatch(t.body)
self.leave()
def _FunctionDef(self, t):
self.__FunctionDef_helper(t, "public Object")
def _AsyncFunctionDef(self, t):
self.__FunctionDef_helper(t, "async def")
def __FunctionDef_helper(self, t, fill_suffix):
self.write("\n")
for deco in t.decorator_list:
self.fill("@")
self.dispatch(deco)
def_str = fill_suffix + " " + t.name + "("
self.fill(def_str)
self.dispatch(t.args)
self.write(")")
if getattr(t, "returns", False):
self.write(" -> ")
self.dispatch(t.returns)
self.enter()
self.dispatch(t.body)
self.leave()
def _For(self, t):
self.__For_helper("for ", t)
def _AsyncFor(self, t):
self.__For_helper("async for ", t)
def __For_helper(self, fill, t):
self.fill(fill)
self.write("(Object ")
self.dispatch(t.target)
self.write(" : ")
self.dispatch(t.iter)
self.write(")")
self.enter()
self.dispatch(t.body)
self.leave()
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _If(self, t):
self.fill("if (")
self.dispatch(t.test)
self.write(")")
self.enter()
self.dispatch(t.body)
self.leave()
# collapse nested ifs into equivalent elifs.
while (t.orelse and len(t.orelse) == 1 and
isinstance(t.orelse[0], ast.If)):
t = t.orelse[0]
self.write(" else if ")
self.dispatch(t.test)
self.enter()
self.dispatch(t.body)
self.leave()
# final else
if t.orelse:
self.write(" else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _While(self, t):
self.fill("while ")
self.dispatch(t.test)
self.enter()
self.dispatch(t.body)
self.leave()
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _generic_With(self, t, async_=False):
self.fill("try")
self.write("(")
if hasattr(t, 'items'):
interleave(lambda: self.write(", "), self.dispatch, t.items)
else:
if t.optional_vars:
self.dispatch(t.optional_vars)
self.write(" = ")
self.dispatch(t.context_expr)
self.write(")")
self.enter()
self.dispatch(t.body)
self.leave()
def _With(self, t):
self._generic_With(t)
def _AsyncWith(self, t):
self._generic_With(t, async_=True)
# expr
def _Bytes(self, t):
self.write(repr(t.s))
def _Str(self, tree):
if six.PY3:
self.write(repr(tree.s))
else:
# if from __future__ import unicode_literals is in effect,
# then we want to output string literals using a 'b' prefix
# and unicode literals with no prefix.
if "unicode_literals" not in self.future_imports:
self.write(repr(tree.s))
elif isinstance(tree.s, str):
self.write("b" + repr(tree.s))
elif isinstance(tree.s, unicode):
self.write(repr(tree.s).lstrip("u"))
else:
assert False, "shouldn't get here"
def _JoinedStr(self, t):
# JoinedStr(expr* values)
self.write("f")
string = StringIO()
self._fstring_JoinedStr(t, string.write)
# Deviation from `unparse.py`: Try to find an unused quote.
# This change is made to handle _very_ complex f-strings.
v = string.getvalue()
if '\n' in v or '\r' in v:
quote_types = ["'''", '"""']
else:
quote_types = ["'", '"', '"""', "'''"]
for quote_type in quote_types:
if quote_type not in v:
v = "{quote_type}{v}{quote_type}".format(quote_type=quote_type, v=v)
break
else:
v = repr(v)
self.write(v)
def _FormattedValue(self, t):
# FormattedValue(expr value, int? conversion, expr? format_spec)
self.write("f")
string = StringIO()
self._fstring_JoinedStr(t, string.write)
self.write(repr(string.getvalue()))
def _fstring_JoinedStr(self, t, write):
for value in t.values:
meth = getattr(self, "_fstring_" + type(value).__name__)
meth(value, write)
def _fstring_Str(self, t, write):
value = t.s.replace("{", "{{").replace("}", "}}")
write(value)
def _fstring_Constant(self, t, write):
assert isinstance(t.value, str)
value = t.value.replace("{", "{{").replace("}", "}}")
write(value)
def _fstring_FormattedValue(self, t, write):
write("{")
expr = StringIO()
Unparser(t.value, expr)
expr = expr.getvalue().rstrip("\n")
if expr.startswith("{"):
write(" ") # Separate pair of opening brackets as "{ {"
write(expr)
if t.conversion != -1:
conversion = chr(t.conversion)
assert conversion in "sra"
write("!{conversion}".format(conversion=conversion))
if t.format_spec:
write(":")
meth = getattr(self, "_fstring_" + type(t.format_spec).__name__)
meth(t.format_spec, write)
write("}")
def _Name(self, t):
name_id = t.id
if name_id == "self":
name_id = "this"
self.write(camel_case(name_id))
def _NameConstant(self, t):
n_c = repr(t.value)
self.write(camel_case(n_c, False))
def _Repr(self, t):
self.write("`")
self.dispatch(t.value)
self.write("`")
def _write_constant(self, value):
if isinstance(value, (float, complex)):
# Substitute overflowing decimal literal for AST infinities.
self.write(repr(value).replace("inf", INFSTR))
else:
self.write(repr(value))
def _Constant(self, t):
value = t.value
if isinstance(value, tuple):
self.write("(")
if len(value) == 1:
self._write_constant(value[0])
self.write(",")
else:
interleave(lambda: self.write(", "), self._write_constant, value)
self.write(")")
elif value is Ellipsis: # instead of `...` for Py2 compatibility
self.write("...")
else:
if t.kind == "u":
self.write("u")
self._write_constant(t.value)
def _Num(self, t):
repr_n = repr(t.n)
if six.PY3:
self.write(repr_n.replace("inf", INFSTR))
else:
# Parenthesize negative numbers, to avoid turning (-1)**2 into -1**2.
if repr_n.startswith("-"):
self.write("(")
if "inf" in repr_n and repr_n.endswith("*j"):
repr_n = repr_n.replace("*j", "j")
# Substitute overflowing decimal literal for AST infinities.
self.write(repr_n.replace("inf", INFSTR))
if repr_n.startswith("-"):
self.write(")")
def _List(self, t):
self.write("Arrays.asList(")
interleave(lambda: self.write(", "), self.dispatch, t.elts)
self.write(")")
def _ListComp(self, t):
self.write("Arrays.asList(")
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write(")")
def _GeneratorExp(self, t):
self.write("(")
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write(")")
def _SetComp(self, t):
self.write("{")
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write("}")
def _DictComp(self, t):
self.write("{")
self.dispatch(t.key)
self.write(": ")
self.dispatch(t.value)
for gen in t.generators:
self.dispatch(gen)
self.write("}")
def _comprehension(self, t):
if getattr(t, 'is_async', False):
self.write(" async for ")
else:
self.write(" for ")
self.dispatch(t.target)
self.write(" in ")
self.dispatch(t.iter)
for if_clause in t.ifs:
self.write(" if ")
self.dispatch(if_clause)
def _IfExp(self, t):
self.write("(")
self.dispatch(t.body)
self.write(" if ")
self.dispatch(t.test)
self.write(" else ")
self.dispatch(t.orelse)
self.write(")")
def _Set(self, t):
assert (t.elts) # should be at least one element
self.write("{")
interleave(lambda: self.write(", "), self.dispatch, t.elts)
self.write("}")
def _Dict(self, t):
self.write("{")
def write_key_value_pair(k, v):
self.dispatch(k)
self.write(": ")
self.dispatch(v)
def write_item(item):
k, v = item
if k is None:
# for dictionary unpacking operator in dicts {**{'y': 2}}
# see PEP 448 for details
self.write("**")
self.dispatch(v)
else:
write_key_value_pair(k, v)
interleave(lambda: self.write(", "), write_item, zip(t.keys, t.values))
self.write("}")
def _Tuple(self, t):
self.write("(")
if len(t.elts) == 1:
elt = t.elts[0]
self.dispatch(elt)
self.write(",")
else:
interleave(lambda: self.write(", "), self.dispatch, t.elts)
self.write(")")
unop = {"Invert": "~", "Not": "not", "UAdd": "+", "USub": "-"}
def _UnaryOp(self, t):
self.write("(")
self.write(self.unop[t.op.__class__.__name__])
self.write(" ")
if six.PY2 and isinstance(t.op, ast.USub) and isinstance(t.operand, ast.Num):
# If we're applying unary minus to a number, parenthesize the number.
# This is necessary: -2147483648 is different from -(2147483648) on
# a 32-bit machine (the first is an int, the second a long), and
# -7j is different from -(7j). (The first has real part 0.0, the second
# has real part -0.0.)
self.write("(")
self.dispatch(t.operand)
self.write(")")
else:
self.dispatch(t.operand)
self.write(")")
binop = {"Add": "+", "Sub": "-", "Mult": "*", "MatMult": "@", "Div": "/", "Mod": "%",
"LShift": "<<", "RShift": ">>", "BitOr": "|", "BitXor": "^", "BitAnd": "&",
"FloorDiv": "//", "Pow": "**"}
def _BinOp(self, t):
self.write("(")
self.dispatch(t.left)
self.write(" " + self.binop[t.op.__class__.__name__] + " ")
self.dispatch(t.right)
self.write(")")
cmpops = {"Eq": "==", "NotEq": "!=", "Lt": "<", "LtE": "<=", "Gt": ">", "GtE": ">=",
"Is": "is", "IsNot": "is not", "In": "in", "NotIn": "not in"}
def _Compare(self, t):
self.write("(")
self.dispatch(t.left)
for o, e in zip(t.ops, t.comparators):
self.write(" " + self.cmpops[o.__class__.__name__] + " ")
self.dispatch(e)
self.write(")")
boolops = {ast.And: '&&', ast.Or: '||'}
def _BoolOp(self, t):
self.write("(")
s = " %s " % self.boolops[t.op.__class__]
interleave(lambda: self.write(s), self.dispatch, t.values)
self.write(")")
def _Attribute(self, t):
self.dispatch(t.value)
# Special case: 3.__abs__() is a syntax error, so if t.value
# is an integer literal then we need to either parenthesize
# it or add an extra space to get 3 .__abs__().
if isinstance(t.value, getattr(ast, 'Constant', getattr(ast, 'Num', None))) and isinstance(t.value.n, int):
self.write(" ")
self.write(".")
self.write(camel_case(t.attr))
def _Call(self, t):
self.dispatch(t.func)
self.write("(")
comma = False
for e in t.args:
if comma:
self.write(", ")
else:
comma = True
self.dispatch(e)
for e in t.keywords:
if comma:
self.write(", ")
else:
comma = True
self.dispatch(e)
if sys.version_info[:2] < (3, 5):
if t.starargs:
if comma:
self.write(", ")
else:
comma = True
self.write("*")
self.dispatch(t.starargs)
if t.kwargs:
if comma:
self.write(", ")
else:
comma = True
self.write("**")
self.dispatch(t.kwargs)
self.write(")")
def _Subscript(self, t):
self.dispatch(t.value)
self.write("[")
self.dispatch(t.slice)
self.write("]")
def _Starred(self, t):
self.write("*")
self.dispatch(t.value)
# slice
def _Ellipsis(self, t):
self.write("...")
def _Index(self, t):
self.dispatch(t.value)
def _Slice(self, t):
if t.lower:
self.dispatch(t.lower)
self.write(":")
if t.upper:
self.dispatch(t.upper)
if t.step:
self.write(":")
self.dispatch(t.step)
def _ExtSlice(self, t):
interleave(lambda: self.write(', '), self.dispatch, t.dims)
# argument
def _arg(self, t):
self.write(t.arg)
if t.annotation:
self.write(": ")
self.dispatch(t.annotation)
# others
def _arguments(self, t):
first = True
# normal arguments
all_args = getattr(t, 'posonlyargs', []) + t.args
defaults = [None] * (len(all_args) - len(t.defaults)) + t.defaults
for index, elements in enumerate(zip(all_args, defaults), 1):
a, d = elements
if first:
first = False
else:
self.write(", ")
self.dispatch(a)
if d:
self.write("=")
self.dispatch(d)
if index == len(getattr(t, 'posonlyargs', ())):
self.write(", /")
# varargs, or bare '*' if no varargs but keyword-only arguments present
if t.vararg or getattr(t, "kwonlyargs", False):
if first:
first = False
else:
self.write(", ")
self.write("*")
if t.vararg:
if hasattr(t.vararg, 'arg'):
self.write(t.vararg.arg)
if t.vararg.annotation:
self.write(": ")
self.dispatch(t.vararg.annotation)
else:
self.write(t.vararg)
if getattr(t, 'varargannotation', None):
self.write(": ")
self.dispatch(t.varargannotation)
# keyword-only arguments
if getattr(t, "kwonlyargs", False):
for a, d in zip(t.kwonlyargs, t.kw_defaults):
if first:
first = False
else:
self.write(", ")
self.dispatch(a),
if d:
self.write("=")
self.dispatch(d)
# kwargs
if t.kwarg:
if first:
first = False
else:
self.write(", ")
if hasattr(t.kwarg, 'arg'):
self.write("**" + t.kwarg.arg)
if t.kwarg.annotation:
self.write(": ")
self.dispatch(t.kwarg.annotation)
else:
self.write("**" + t.kwarg)
if getattr(t, 'kwargannotation', None):
self.write(": ")
self.dispatch(t.kwargannotation)
def _keyword(self, t):
if t.arg is None:
# starting from Python 3.5 this denotes a kwargs part of the invocation
self.write("**")
else:
self.write(t.arg)
self.write("=")
self.dispatch(t.value)
def _Lambda(self, t):
self.write("(")
self.write("lambda ")
self.dispatch(t.args)
self.write(": ")
self.dispatch(t.body)
self.write(")")
def _alias(self, t):
self.write(t.name)
if t.asname:
self.write(" as " + t.asname)
def _withitem(self, t):
if t.optional_vars:
self.dispatch(t.optional_vars)
self.write(" = ")
self.dispatch(t.context_expr)
def roundtrip(filename, output=sys.stdout):
if six.PY3:
with open(filename, "rb") as pyfile:
encoding = tokenize.detect_encoding(pyfile.readline)[0]
with open(filename, "r", encoding=encoding) as pyfile:
source = pyfile.read()
else:
with open(filename, "r") as pyfile:
source = pyfile.read()
tree = compile(source, filename, "exec", ast.PyCF_ONLY_AST, dont_inherit=True)
Unparser(tree, output)
def testdir(a):
try:
names = [n for n in os.listdir(a) if n.endswith('.py')]
except OSError:
print("Directory not readable: %s" % a, file=sys.stderr)
else:
for n in names:
fullname = os.path.join(a, n)
if os.path.isfile(fullname):
output = StringIO()
print('Testing %s' % fullname)
try:
roundtrip(fullname, output)
except Exception as e:
print(' Failed to compile, exception is %s' % repr(e))
elif os.path.isdir(fullname):
testdir(fullname)
from six.moves import cStringIO
def unparse(tree):
v = cStringIO()
JavaUnparser(tree, file=v)
return v.getvalue()
if __name__ == '__main__':
with open('file.py', 'r') as pt:
tree = ast.parse(pt.read())
v = cStringIO()
JavaUnparser(tree, file=v)
print(v.getvalue())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment