Skip to content

Instantly share code, notes, and snippets.

@anaisbetts
Created May 26, 2018 17:17
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save anaisbetts/d7e349153c6d37e1f5db08e1a74ff5fe to your computer and use it in GitHub Desktop.
Save anaisbetts/d7e349153c6d37e1f5db08e1a74ff5fe to your computer and use it in GitHub Desktop.
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import {MnistData} from './data';
const model = tf.sequential();
model.add(tf.layers.conv2d({
inputShape: [28, 28, 1],
kernelSize: 5,
filters: 8,
strides: 1,
activation: 'relu',
kernelInitializer: 'varianceScaling'
}));
model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [2, 2]}));
model.add(tf.layers.conv2d({
kernelSize: 5,
filters: 16,
strides: 1,
activation: 'relu',
kernelInitializer: 'varianceScaling'
}));
model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [2, 2]}));
model.add(tf.layers.flatten());
model.add(tf.layers.dense(
{units: 10, kernelInitializer: 'varianceScaling', activation: 'softmax'}));
const LEARNING_RATE = 0.15;
const optimizer = tf.train.sgd(LEARNING_RATE);
model.compile({
optimizer: optimizer,
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
});
const BATCH_SIZE = 64;
const TRAIN_BATCHES = 150;
// Every few batches, test accuracy over many examples. Ideally, we'd compute
// accuracy over the whole test set, but for performance we'll use a subset.
const TEST_BATCH_SIZE = 1000;
const TEST_ITERATION_FREQUENCY = 5;
async function train() {
//ui.isTraining();
const lossValues = [];
const accuracyValues = [];
for (let i = 0; i < TRAIN_BATCHES; i++) {
const batch = data.nextTrainBatch(BATCH_SIZE);
let testBatch;
let validationData;
// Every few batches test the accuracy of the mode.
if (i % TEST_ITERATION_FREQUENCY === 0) {
testBatch = data.nextTestBatch(TEST_BATCH_SIZE);
validationData = [
testBatch.xs.reshape([TEST_BATCH_SIZE, 28, 28, 1]), testBatch.labels
];
}
// The entire dataset doesn't fit into memory so we call fit repeatedly
// with batches.
const history = await model.fit(
batch.xs.reshape([BATCH_SIZE, 28, 28, 1]), batch.labels,
{batchSize: BATCH_SIZE, validationData, epochs: 1});
const loss = history.history.loss[0];
const accuracy = history.history.acc[0];
// Plot loss / accuracy.
lossValues.push({'batch': i, 'loss': loss, 'set': 'train'});
//ui.plotLosses(lossValues);
if (testBatch != null) {
accuracyValues.push({'batch': i, 'accuracy': accuracy, 'set': 'train'});
//ui.plotAccuracies(accuracyValues);
}
batch.xs.dispose();
batch.labels.dispose();
if (testBatch != null) {
testBatch.xs.dispose();
testBatch.labels.dispose();
}
await tf.nextFrame();
}
}
function showTestResults(batch, predictions, labels) {
const testExamples = batch.xs.shape[0];
let totalCorrect = 0;
for (let i = 0; i < testExamples; i++) {
const prediction = predictions[i];
const label = labels[i];
const correct = prediction === label;
if (correct) totalCorrect++;
console.log(`pred: ${prediction} - ${correct}`);
}
console.log(`${totalCorrect}/${testExamples} => ${(totalCorrect/testExamples) * 100.0}% correct`);
}
async function showPredictions() {
const testExamples = 100;
const batch = data.nextTestBatch(testExamples);
tf.tidy(() => {
const output = model.predict(batch.xs.reshape([-1, 28, 28, 1]));
const axis = 1;
const labels = Array.from(batch.labels.argMax(axis).dataSync());
const predictions = Array.from(output.argMax(axis).dataSync());
showTestResults(batch, predictions, labels);
});
}
let data;
async function load() {
data = new MnistData();
await data.load();
}
export async function mnist() {
await load();
await train();
showPredictions();
}
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
# Input Layer
# Reshape X to 4-D tensor: [batch_size, width, height, channels]
# MNIST images are 28x28 pixels, and have one color channel
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
# Convolutional Layer #1
# Computes 32 features using a 5x5 filter with ReLU activation.
# Padding is added to preserve width and height.
# Input Tensor Shape: [batch_size, 28, 28, 1]
# Output Tensor Shape: [batch_size, 28, 28, 32]
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #1
# First max pooling layer with a 2x2 filter and stride of 2
# Input Tensor Shape: [batch_size, 28, 28, 32]
# Output Tensor Shape: [batch_size, 14, 14, 32]
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Convolutional Layer #2
# Computes 64 features using a 5x5 filter.
# Padding is added to preserve width and height.
# Input Tensor Shape: [batch_size, 14, 14, 32]
# Output Tensor Shape: [batch_size, 14, 14, 64]
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #2
# Second max pooling layer with a 2x2 filter and stride of 2
# Input Tensor Shape: [batch_size, 14, 14, 64]
# Output Tensor Shape: [batch_size, 7, 7, 64]
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# Flatten tensor into a batch of vectors
# Input Tensor Shape: [batch_size, 7, 7, 64]
# Output Tensor Shape: [batch_size, 7 * 7 * 64]
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
# Dense Layer
# Densely connected layer with 1024 neurons
# Input Tensor Shape: [batch_size, 7 * 7 * 64]
# Output Tensor Shape: [batch_size, 1024]
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
# Add dropout operation; 0.6 probability that element will be kept
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits layer
# Input Tensor Shape: [batch_size, 1024]
# Output Tensor Shape: [batch_size, 10]
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment