Primitive recursive functions in Agda
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Data.Nat | |
open import Data.Fin as Fin | |
module Primrec where | |
-- The datatype of primitive recursive function | |
data PR : ∀ (k : ℕ) → Set where | |
pr-zero : PR 0 -- zero | |
pr-succ : PR 1 -- successor | |
pr-proj : ∀ {k} (i : Fin k) → PR k -- projection | |
pr-comp : ∀ {k m} (fs : Fin k → PR m) (g : PR k) → PR m -- composition | |
pr-rec : ∀ {k} (f : PR k) (g : PR (suc (suc k))) → PR (suc k) -- primitive recursion | |
-- Evaluate a primitive recursive function | |
eval : ∀ {k} (f : PR k) → (∀ (i : Fin k) → ℕ) → ℕ | |
eval pr-zero xs = 0 | |
eval pr-succ xs = suc (xs zero) | |
eval (pr-proj i) xs = xs i | |
eval (pr-comp fs f) xs = eval f λ i → eval (fs i) xs | |
eval (pr-rec f g) xs = primrec (xs zero) | |
where primrec : ℕ → ℕ | |
primrec zero = eval f (λ i → xs (suc i)) | |
primrec (suc n) = eval g (λ { Fin.zero → n | |
; (Fin.suc Fin.zero) → primrec n | |
; (Fin.suc (Fin.suc i)) → xs (suc i)}) | |
-- unary and binary evaluation | |
eval-1 : PR 1 → ℕ → ℕ | |
eval-1 f n = eval f λ _ → n | |
eval-2 : PR 2 → ℕ → ℕ → ℕ | |
eval-2 f m n = eval f λ { zero → m ; (suc zero) → n} | |
-- unary composition | |
pr-comp-1 : ∀ {k} → PR k → PR 1 → PR k | |
pr-comp-1 f g = pr-comp (λ i → f) g | |
-- binary composition | |
pr-comp-2 : ∀ {k} → PR k → PR k → PR 2 → PR k | |
pr-comp-2 f g h = pr-comp (λ { zero → f ; (suc zero) → g}) h | |
-- useful projections | |
pr-fst : ∀ {k} → PR (suc k) | |
pr-fst = pr-proj Fin.zero | |
pr-snd : ∀ {k} → PR (suc (suc k)) | |
pr-snd = pr-proj (Fin.suc Fin.zero) | |
pr-thd : ∀ {k} → PR (suc (suc (suc k))) | |
pr-thd = pr-proj (Fin.suc (Fin.suc Fin.zero)) | |
-- identity | |
pr-id : PR 1 | |
pr-id = pr-fst | |
-- constant map | |
pr-const : ∀ {k} → ℕ → PR k | |
pr-const zero = pr-comp (λ {()}) pr-zero | |
pr-const (suc n) = pr-comp-1 (pr-const n) pr-succ | |
-- predecessor | |
pr-pred : PR 1 | |
pr-pred = pr-rec (pr-const 0) pr-fst | |
-- addition | |
pr-add : PR 2 | |
pr-add = pr-rec pr-id (pr-comp-1 pr-snd pr-succ) | |
-- multiplication | |
pr-mul : PR 2 | |
pr-mul = pr-rec (pr-const 0) (pr-comp-2 pr-snd pr-thd pr-add) | |
-- examples | |
three : ℕ | |
three = eval-1 pr-pred 4 | |
seven : ℕ | |
seven = eval-2 pr-add 3 4 | |
forty-two : ℕ | |
forty-two = eval-2 pr-mul 6 7 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment