Skip to content

Instantly share code, notes, and snippets.

@andrejbauer
Last active February 19, 2024 09:02
Show Gist options
  • Save andrejbauer/723aa10d90dc63a7ce0d07f0685c7a8b to your computer and use it in GitHub Desktop.
Save andrejbauer/723aa10d90dc63a7ce0d07f0685c7a8b to your computer and use it in GitHub Desktop.
Example of Andromeda ML-programming
(* In Andromeda everything the user writes is "meta-level programming. *)
(* ML-level natural numbers *)
mltype rec mlnat =
| zero
| succ of mlnat
end
(* We can use the meta-level numbers to define a program which computes n-fold iterations
of f. Here we give an explicit type of iterate because the ML-type inference cannot tell
whether f is an ML-function or an object-level term. *)
let rec iterate f x n : judgment → judgment → mlnat → judgment =
match n with
| zero ⇒ x
| succ ?n ⇒ f (iterate f x n)
end
constant A : Type
constant a : A
constant g : A → A
do iterate g a (succ (succ (succ zero)))
(* output: ⊢ g (g (g a)) : A *)
(* Defining iteration of functions at object-level is a different business. We first
axiomatize the natural numbers. *)
constant nat : Type
constant O : nat
constant S : nat → nat
constant nat_rect : Π (P : nat → Type) (s0 : P O) (s : Π (n : nat), P n → P (S n)) (m : nat), P m
constant nat_iota_O :
Π (P : nat → Type) (s0 : P O) (s : Π (n : nat), P n → P (S n)),
nat_rect P s0 s O ≡ s0
constant nat_iota_S :
Π (P : nat → Type) (s0 : P O) (s : Π (n : nat), P n → P (S n)) (m : nat),
nat_rect P s0 s (S m) ≡ s m (nat_rect P s0 s m)
(* We use the standard library to get correct normalization of nat_rect *)
now reducing = add_reducing nat_rect [lazy, lazy, lazy, eager]
now betas = add_betas [nat_iota_O, nat_iota_S]
(* Iterataion at object-level is defined using nat_rect, as it is
just the non-dependent version of induction. *)
constant iter : ∏ (X : Type), (X → X) → X → nat → X
constant iter_def :
∏ (X : Type) (f : X → X) (x : X) (n : nat),
iter X f x n ≡ nat_rect (λ _, X) x (λ _ y, f y) n
(* We tell the standard library about the definition of iter *)
now betas = add_beta iter_def
(* An object-level iteration of g can be done as follows. *)
do iter A g a (S (S (S O)))
(* output: ⊢ iter A g a (S (S (S O))) : A *)
(* We can use the whnf function from the standard library to normalize a term. By default
it performs weak head-normalization. But here we *locally* tell it to aggresively
normalize arguments of g. *)
do
now reducing = add_reducing g [eager] in
whnf (iter A g a (S (S (S O))))
(* output: ⊢ refl (g (g (g a))) : iter A g a (S (S (S O))) ≡ g (g (g a)) *)
(* We can also pattern-match on terms at ML-level. *)
do
match g (g (g a)) with
| ⊢ (?h (?h ?x)) ⇒ h x
end
(* output ⊢ g (g a) : A *)
(* We can match anywhere, also under a λ-expression. Because match is ML-level it computes
immediately, i.e, it actually matches against the bound variable x. *)
do
(λ x : A,
match x with
| ⊢ ?f ?y ⇒ y
| ⊢ ?z ⇒ g z
end) (g a)
(* output ⊢ (λ (x : A), g x) (g a) : A *)
(* Now suppose we want to construct λ h, h (h (h a)) using iteration. Since λ-expressions
are still just ML-level programs which compute judgments, we can do it as follows using
the ML-level iteration. *)
do λ h : A → A, iterate h a (succ (succ (succ zero)))
(* output: ⊢ λ (h : A → A), h (h (h a)) : (A → A) → A *)
(* If we use object-level iteration we get a different term which
is still equal to the one we wanted. *)
do λ h : A → A, iter A h a (S (S (S O)))
(* output: ⊢ λ (h : A → A), iter A h a (S (S (S O))) : (A → A) → A *)
(* The standard library is smart enough to see that the two terms
are equal. (It has funext built in.) *)
do
let u = λ (h : A → A), iterate h a (succ (succ (succ zero)))
and v = λ (h : A → A), iter A h a (S (S (S O))) in
refl u : u ≡ v
(* output:
⊢ refl (λ (h : A → A), h (h (h a)))
: (λ (h : A → A), h (h (h a))) ≡
(λ (h : A → A), iter A h a (S (S (S O))))
*)
(* We could use object-level iteration and normalization to compute
the desired term as follows. *)
do
λ h : A → A,
now reducing = add_reducing h [eager] in
match whnf (iter A h a (S (S (S O)))) with
| ⊢ _ : _ ≡ ?e ⇒ e
end
(* output: ⊢ λ (h : A → A), h (h (h a)) : (A → A) → A *)
@andrejbauer
Copy link
Author

You can tell which tuples of constants are harmless by showing that their types are contractible, as I mentioned earlier. That's what it takes for them to be eliminated. And this is a semantic condition, not a built-in syntactic approximation of it. In general, we abhor syntactic conditions because they are necessarily limiting.

You should in general use constant for postulates and assume for thigs you want tracked. (I realize now that the above example does not have any assumes.)

Whether we can have different kinds of judgments is a very interesting question. It would be great if we could, but then I think we'd move much more in the direction of LF. I am not saying that's bad, just that it requires a bit of thought.

Do you see the gist comments in your GitHub notifications? I don't. It might not be possible to follow them, which is a bummer. In that case, it would be better to use Andromeda issues for discussions like this one.

@mikeshulman
Copy link

No, I don't see anything in my github notifications.

It's true that syntactic conditions are more limited than semantic ones, but the point of a syntactic condition is that it's something you can check. The ultimate semantic condition is "P is true", but of course you can't check that directly; you have to give a proof, which is a syntactic thing whose correctness can be verified. I would be really unhappy if I had to prove every time I make a definition that it was well-defined; it's precisely the limitedness of syntactic conditions that allows us to prove metatheorems about them once and for all, like the admissibility of definitional extensions.

Is there an actual difference in meaning between constant and assume?

Finally, I think I still don't understand how variable binding works. Can you go through the funky handler example Gaetan posted on your blog

try lambda x : A, raise (Error x)
with Error e => e
end

and explain exactly what happens at every step and what the types of everything is?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment