implement noisy cross entropy method for rl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# modified from https://gist.github.com/sorenbouma/6502fbf55ecdf988aa247ef7f60a9546 | |
import gym | |
import numpy as np | |
import matplotlib.pyplot as plt | |
env = gym.make('CartPole-v0') | |
env.render(close=True) | |
#vector of means(mu) and standard dev(sigma) for each paramater | |
mu=np.random.uniform(size=env.observation_space.shape) | |
sigma=np.random.uniform(low=0.001,size=env.observation_space.shape) | |
def noisy_evaluation(env,W,render=False,): | |
""" uses parameter vector W to choose policy for 1 episode, | |
returns reward from that episode""" | |
reward_sum=0 | |
state=env.reset() | |
t=0 | |
while True: | |
t+=1 | |
action=int(np.dot(W,state)>0)#use parameters/state to choose action | |
state,reward,done,info=env.step(action) | |
reward_sum+=reward | |
if render and t%3==0: env.render() | |
if done or t > 205: | |
#print("finished episode, got reward:{}".format(reward_sum)) | |
break | |
return reward_sum | |
def init_params(mu,sigma,n): | |
"""take vector of mus, vector of sigmas, create matrix such that """ | |
l=mu.shape[0] | |
w_matrix=np.zeros((n,l)) | |
for p in range(l): | |
w_matrix[:,p]=np.random.normal(loc=mu[p],scale=sigma[p]+1e-17,size=(n,)) | |
return w_matrix | |
def get_constant_noise(step): | |
return np.max(5-step/10., 0) | |
running_reward=0 | |
n=40;p=8;n_iter=20;render=False | |
state=env.reset() | |
i=0 | |
while i < n_iter: | |
#initialize an array of parameter vectors | |
#wvector_array=np.random.normal(loc=mu,scale=sigma,size=(n,state.shape[0])) | |
wvector_array=init_params(mu,sigma,n) | |
reward_sums=np.zeros((n)) | |
for k in range(n): | |
#sample rewards based on policy parameters in row k of wvector_array | |
reward_sums[k]=noisy_evaluation(env,wvector_array[k,:],render) | |
env.render(close=True) | |
#sort params/vectors based on total reward of an episode using that policy | |
rankings=np.argsort(reward_sums) | |
#pick p vectors with highest reward | |
top_vectors=wvector_array[rankings,:] | |
top_vectors=top_vectors[-p:,:] | |
print("top vectors shpae:{}".format(top_vectors.shape)) | |
#fit new gaussian from which to sample policy | |
for q in range(top_vectors.shape[1]): | |
mu[q]=top_vectors[:,q].mean() | |
sigma[q]=top_vectors[:,q].std()+get_constant_noise(i) | |
running_reward=0.99*running_reward + 0.01*reward_sums.mean() | |
print("#############################################################################") | |
print("iteration:{},mean reward:{}, running reward mean:{} \n" | |
" reward range:{} to {},".format( | |
i, reward_sums.mean(),running_reward,reward_sums.min(),reward_sums.max(), | |
)) | |
i+=1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment