Skip to content

Instantly share code, notes, and snippets.

Avatar

Andrie de Vries andrie

View GitHub Profile
View keybase.md

Keybase proof

I hereby claim:

  • I am andrie on github.
  • I am apdevries (https://keybase.io/apdevries) on keybase.
  • I have a public key ASDOCA6xxvGsbQQS_v860hBzhtmtZ2Jf-sscY3X2a2kl5wo

To claim this, I am signing this object:

@andrie
andrie / strange_attractor.R
Created Apr 17, 2019
Plotting strange attractors using `datashader` with `reticulate`
View strange_attractor.R
# Original blog post
# https://fronkonstin.com/2019/01/10/rcpp-camaron-de-la-isla-and-the-beauty-of-maths/
# For this example to work, you must have a conda environment with the datashader library
# See http://datashader.org/getting_started/index.html#installation for installation instructions
library(Rcpp)
library(reticulate)
library(dplyr)
use_condaenv("datashader", required = TRUE)
@andrie
andrie / Can you keep a secret.R
Created Jul 29, 2017
Demo of `secret` package at UseR!2017
View Can you keep a secret.R
# load the package ----------------------------------------------------
# install.packages("secret")
library(secret)
library(magrittr)
# set up local user ---------------------------------------------------
@andrie
andrie / CRAN_pkg_segmented_model.R
Created Apr 27, 2016
Segmented regression model of CRAN packages
View CRAN_pkg_segmented_model.R
library(segmented)
library(Ecdat)
library(ggplot2)
data("CRANpackages")
str(CRANpackages)
CRANpackages$Version <- as.character(CRANpackages$Version)
CRANpackages <- rbind(CRANpackages,
data.frame(Version = "3.2",
@andrie
andrie / 0-miniCRAN-SQL-server.R
Last active Sep 20, 2017
Use miniCRAN to install packages on SQL Server
View 0-miniCRAN-SQL-server.R
# Instructions for using miniCRAN to create a package repository for installing packages on SQL Server 2016
#
# 1. Create a local repository on a machine connected to the Internet
# 2. Copy the miniCRAN repository to the target machine
# 3. Install the packages on the target machine
@andrie
andrie / CRAN_pkg_history.R
Last active Feb 26, 2020
Scrapes CRAN for historical number of packages per release
View CRAN_pkg_history.R
# Scrapes CRAN archives to determine the number of packages per release
# Create a list of pages to scrape, including both archive and current
extract_url <- function(){
url <- list(
archive = "https://cran-archive.r-project.org/bin/windows/contrib/",
active = "https://cran.r-project.org/bin/windows/contrib/"
)
get_urls <- function(url){
@andrie
andrie / analysis.R
Created Dec 27, 2015
World record runing events
View analysis.R
library(ggplot2)
dat <- read.csv("world records.csv", stringsAsFactors = FALSE)
# Clean and transform the data --------------------------------------------
track <- within(dat, {
Time <- as.numeric(Time.in.hours)
Date <- as.Date(Date, format = "%d-%b-%y")
Speed <- Distance / Time
logDistance <- log10(Distance)
View install-and-try-wakefield.R
# Install from github ----------------
# install.packages(c("chron", "ggplot2", "dplyr", "stringi"))
# devtools::install_github("trinker/wakefield")
# Create a sample data frame ---------
library(wakefield)
r_data_frame(
n = 500,
id,
View wakefield-example.R
library(magrittr)
library(dplyr)
library(tidyr)
library(ggplot2)
set.seed(1)
dat <- r_data_frame(12,
name,
r_series(grade, 100, relate = "+1_6")
)
View problematic-mkl-mclapply.R
library(parallel)
set.seed(1)
m <- 10000
n <- 2000
A <- matrix(runif (m*n),m,n)
setMKLthreads(1)
system.time(S <- svd (A,nu=0,nv=0))
# user system elapsed
You can’t perform that action at this time.