View sql_window_functions_01.sql
/* Sample data */ | |
insert into emp (EMPID, NAME, JOB, SALARY) | |
values | |
(201, 'ANIRUDDHA', 'ANALYST', 2100), | |
(212, 'LAKSHAY', 'DATA ENGINEER', 2700), | |
(209, 'SIDDHARTH', 'DATA ENGINEER', 3000), | |
(232, 'ABHIRAJ', 'DATA SCIENTIST', 2500), | |
(205, 'RAM', 'ANALYST', 2500), | |
(222, 'PRANAV', 'MANAGER', 4500), | |
(202, 'SUNIL', 'MANAGER', 4800), |
View mongo_stats_12.py
# Query stats | |
pprint(db.restaurants.find({'cuisine':'French','grades.score':{'$gt':5}}).explain()['executionStats']) |
View mongo_stats_11.py
# Query stats | |
pprint(db.restaurants.find({'cuisine':'American'}).explain()['executionStats']) |
View mongo_stats_10.py
pprint(db.restaurants.find().explain()) |
View mongo_index_17.py
# Multiple token search | |
db.restaurants.find_one({"$text": {"$search": "Chinese -Restaurant"}}) |
View mongo_index_16.py
# Multiple token search | |
db.restaurants.find_one({"$text": {"$search": "Chinese Kitchen"}}) |
View mongo_index_15.py
# Find restaurants with Kitchen in their name | |
db.restaurants.find_one({"$text": {"$search": "Kitchen"}}) |
View mongo_index_14.py
# Drop indexes | |
db.restaurants.drop_indexes() | |
# Create text index | |
db.restaurants.create_index([('name', 'text')], | |
name='restaurant_name') | |
# List indexes | |
pprint(db.restaurants.index_information()) |
View mongo_stats_9.py
# Query stats | |
pprint(db.restaurants.find({'cuisine':'French'}).explain()['executionStats']) |
View mongo_stats_8.py
# Query stats | |
pprint(db.restaurants.find({'cuisine':'French','grades.score':{'$gt':2}}).explain()['executionStats']) |
NewerOlder