/tile-highlight-images.py Secret
Created
December 10, 2019 18:01
Star
You must be signed in to star a gist
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import numpy as np | |
import PIL.Image | |
import scipy.misc | |
import sys | |
import os | |
import random | |
def color(hex_repr): | |
n = int(hex_repr, 16) | |
r = (n >> 16) / 255.0 | |
g = (n >> 8 & 255) / 255.0 | |
b = (n & 255) / 255.0 | |
ret = [r, g, b] | |
return ret | |
CORRECT_COLOR = color('27ae60') | |
ADV_COLOR = color('d32f2f') | |
MIS_COLOR = color('000000') | |
def main(): | |
data_dir, output_filename, width, height, tile_dim, border_dim, border_line_width, extra_seed = sys.argv[1:] | |
width = int(width) | |
height = int(height) | |
tile_dim = int(tile_dim) | |
border_dim = int(border_dim) | |
border_line_width = int(border_line_width) | |
total = width * height | |
final_tile_size = (tile_dim + 2*border_dim) | |
output_dir = os.path.dirname(output_filename) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# height, width, depth | |
output_image = np.ones((height*final_tile_size, width*final_tile_size, 3)) | |
# choose pseudorandom subset | |
files = [os.path.splitext(os.path.basename(i))[0] for i in os.listdir(data_dir) if i.endswith('.txt')] | |
# this should be reproducible!! | |
random.seed(int('labsix', 36) + 10000*height + 100*width + int(extra_seed)) | |
random.shuffle(files) | |
files = files[:height*width] | |
index = 0 | |
for ih in range(height): | |
for iw in range(width): | |
image = get_image(os.path.join(data_dir, '%s.png' % files[index]), tile_dim) | |
with open(os.path.join(data_dir, '%s.txt' % files[index])) as f: | |
classification = f.read().strip() | |
ph = ih * final_tile_size | |
pw = iw * final_tile_size | |
output_image[ph:ph+final_tile_size, pw:pw+final_tile_size, :] = \ | |
format_image(image, classification, tile_dim, border_dim, border_line_width, final_tile_size) | |
index += 1 | |
scipy.misc.imsave(output_filename, output_image) | |
def get_image(path, tile_dim): | |
img = PIL.Image.open(path) | |
img = img.resize((tile_dim, tile_dim), resample=PIL.Image.BILINEAR) | |
return np.asarray(img).astype(np.float32)/255.0 | |
def format_image(image, classification, tile_dim, border_dim, border_line_width, final_tile_size): | |
out = np.ones((final_tile_size, final_tile_size, 3)) | |
start = border_dim - border_line_width | |
end = final_tile_size - start | |
if classification == 'correct': | |
out[start:end, start:end, :] = CORRECT_COLOR | |
elif classification == 'adversarial': | |
out[start:end, start:end, :] = ADV_COLOR | |
else: | |
assert classification == 'misclassified' | |
out[start:end, start:end, :] = MIS_COLOR | |
out[border_dim:border_dim+tile_dim, border_dim:border_dim+tile_dim, :] = image | |
return out | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment