Created
January 23, 2012 20:41
-
-
Save anonymous/1665438 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from pylab import * | |
from collections import defaultdict | |
def confusion_matrix(results, filename='confmat.png'): | |
# calculate the confusion matrix | |
N = 17 | |
conf_mat = np.zeros( (N,N) ) | |
for k,v in results.items(): | |
event_id = lambda event: int(event[1:]) | |
x = event_id(v['event']) if v.has_key('event') else 16 | |
y = event_id(v['user_event']) if v.has_key('user_event') else 16 | |
# if x==16 or y==16: continue | |
conf_mat[x][y] += 1 | |
# normalize the confusion matrix | |
norm_conf = [map(lambda x: float(x)/sum(i), i) for i in conf_mat] | |
# draw the confusion matrix | |
fig = plt.figure() | |
ax = fig.add_subplot(1,1,1) | |
ind = np.arange(N) | |
ax.set_yticks(ind) | |
ax.set_yticklabels(['E0%02d' % i for i in range(N-1)] + ['skip']) | |
ax.set_xticks(ind) | |
ax.set_xticklabels(['E0%02d' % i for i in range(N-1)] + ['skip'], rotation='vertical') | |
res = ax.imshow(array(norm_conf), interpolation='nearest') | |
cb = fig.colorbar(res) | |
# number annotation | |
for i, cas in enumerate(conf_mat): | |
for j, c in enumerate(cas): | |
if c>0: | |
plt.text(j-.2, i+.2, int(c), fontsize=12) | |
savefig(filename, format="png") | |
# plt.show() | |
def time_attempt(results, filename='time_attempt.png'): | |
U = defaultdict(list) | |
for k, v in results.items(): | |
if v.has_key('end_time'): | |
U[v['user_id']].append( (v['start_time'], v['end_time']) ) | |
for k, v in U.items(): | |
v.sort() | |
max_done = 0 | |
for k, v in U.items(): | |
U[k] = [ y-x for (x,y) in U[k] ] | |
max_done = max(max_done, len(U[k])) | |
sum_time = [0] * max_done | |
count = [0] * max_done | |
for k, v in U.items(): | |
for i in range(len(U[k])): | |
sum_time[i] += U[k][i] | |
count[i] += 1 | |
avg_time = [sum_time[i] * 1./count[i] for i in range(len(count))] | |
clf() | |
plot(avg_time) | |
xlabel('number of attempts') | |
ylabel('time taken (s)') | |
savefig(filename, format='png') | |
# show() | |
def acc_user(results, filename='acc_user.png'): | |
U = {} | |
for k, v in results.items(): | |
if v.has_key('user_event'): | |
U[v['user_id']] = [0, 0] | |
for k, v in results.items(): | |
if v.has_key('end_time'): | |
U[v['user_id']][1] += 1 | |
if v['event'] == v['user_event']: | |
U[v['user_id']][0] += 1 | |
x = U.keys() | |
y = [ float(v[0]) / v[1] for _, v in U.items()] | |
# draw bar chart | |
fig = plt.figure() | |
ax = fig.add_subplot(1,1,1) | |
width = .5; | |
ind = np.arange(len(y)) | |
rects1 = ax.bar(np.arange(len(y)), y, width) | |
ax.set_xticks(ind+width*.5) | |
ax.set_xticklabels( x, rotation='vertical') | |
savefig(filename, format='png') | |
# plt.show() | |
def time_class(results, attr='user_id', filename='time_attr.png'): | |
filename = 'time_%s.png'% attr | |
def group(results, attr='event'): | |
U = defaultdict(list) | |
for _, v in results.items(): | |
U[v[attr]].append(v) | |
return U | |
U = group(results,attr) | |
avg_time = [] # average time | |
keys = [] | |
for k,d in U.items(): | |
t = 0 | |
cnt = 0 | |
for v in d: | |
if v.has_key('end_time'): | |
t += v['end_time'] - v['start_time'] | |
cnt += 1 | |
if cnt > 0: | |
avg_time.append(float(t) / cnt) # average time taken | |
keys.append(k) | |
keys, avg_time = zip(*sorted(zip(keys,avg_time))) | |
fig = plt.figure() | |
ax = fig.add_subplot(1,1,1) | |
ind = np.arange(len(avg_time)) | |
width = 0.5 | |
ax.bar(ind, avg_time, width) | |
ax.set_ylabel('average time taken (s)') | |
ax.set_xlabel(attr) | |
ax.set_xticks(ind+width) | |
ax.set_xticklabels(keys, rotation='vertical') | |
savefig(filename, format="png") | |
# plt.show() | |
def acc_time(results, filename='acc_time.png'): | |
# group time interval... | |
def group_time(results): | |
# 5 seconds interval... | |
M = 15 | |
U = [ [] for i in range(M) ] | |
for _, v in results.items(): | |
if v.has_key('end_time'): | |
if v['end_time']==v['start_time']: | |
print v['start_time'], v['end_time'], v['user_id'] | |
U[min(int((v['end_time'] - v['start_time']) / 5), len(U)-1)].append(v) | |
keys = ['%d-%d'%(i*5,(i+1)*5) for i in range(M-1)] | |
keys.append('>= %d' % (M*5)) | |
return (keys, U) | |
(keys,U) = group_time(results) | |
acc = [] | |
frac = [] | |
for d in U: | |
c = cnt = 0 | |
for v in d: | |
c += 1 if v['event']==v['user_event'] else 0 | |
cnt += 1 | |
acc.append(float(c) / max(cnt,1)) | |
frac.append( (c,cnt) ) | |
fig = plt.figure(figsize=(10,9)) | |
ax = fig.add_subplot(1,1,1) | |
ind = np.arange(len(acc)) | |
width = 1 | |
rects = ax.bar(ind, acc, width) | |
ax.set_ylabel('average accuracy') | |
ax.set_xlabel('time taken (s)') | |
ax.set_xticks(ind+width*.5) | |
ax.set_xticklabels(keys, rotation='vertical') | |
for i in range(len(rects)): | |
height = rects[i].get_height() | |
ax.text(rects[i].get_x()+rects[i].get_width()/2., 1.05*(height+0.01), | |
'%d / %d'%(frac[i][0],frac[i][1]), ha='center', | |
va='bottom', rotation='vertical') | |
gca().set_ylim([0,1]) | |
savefig(filename, format="png") | |
# plt.show() | |
def calculate_statistics(results): | |
acc_time(results) | |
confusion_matrix(results) | |
time_class(results) | |
time_attempt(results) | |
acc_user(results) | |
if __name__ == "__main__": | |
import json | |
with open('results.js', 'r') as f: | |
results = json.loads(f.read()) | |
calculate_statistics(results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment