-
-
Save anonymous/1af53a1da1357a6a97c3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| 5 | |
| B 0.99813803 -0.00263872 -0.00464602 | |
| A 2.09441750 -0.00242373 0.00417336 | |
| A 0.63238996 1.03082951 0.00417296 | |
| A 0.62561232 -0.52974905 0.88151021 | |
| A 0.64010219 -0.50924801 -0.90858051 | |
| 8 | |
| B 0.99566434 -0.00295079 -0.00645530 | |
| B 2.52433599 -0.00704005 0.00062949 | |
| A 0.59642533 1.02180902 -0.00238364 | |
| A 0.58817563 -0.51880627 0.87523331 | |
| A 0.59641749 -0.50854984 -0.89780318 | |
| A 2.92359554 0.50116660 0.89048719 | |
| A 2.93182660 0.50621547 -0.88257380 | |
| A 2.92355907 -1.03181414 -0.00043407 | |
| 6 | |
| B 0.98946692 0.00007550 0.00000000 | |
| B 2.32461012 -0.00013585 0.00000000 | |
| A 0.41663940 0.92974933 0.00000000 | |
| A 0.41634287 -0.92941467 0.00000000 | |
| A 2.89773268 0.92935495 0.00000000 | |
| A 2.89743801 -0.92980927 0.00000000 | |
| 4 | |
| B 0.98972410 0.00000000 0.00000000 | |
| B 2.20043588 0.00000000 0.00000000 | |
| A -0.08202857 0.00000000 0.00000000 | |
| A 3.27218859 0.00000000 0.00000000 | |
| 9 | |
| B -0.02685201 0.87078057 -0.05692871 | |
| B -0.73928196 -0.46068850 -0.05716072 | |
| B 0.76666931 -0.41017260 0.04288779 | |
| A 0.01672181 1.42791936 -0.99323318 | |
| A -0.10696079 1.49356439 0.83453787 | |
| A -1.17833564 -0.80568159 -0.99374138 | |
| A -1.30207225 -0.73988932 0.83406126 | |
| A 1.22416472 -0.65503779 1.00190446 | |
| A 1.34779680 -0.72084452 -0.82587738 | |
| 11 | |
| B 0.97845955 -0.02768979 0.00389766 | |
| B 2.50774209 0.01819297 0.00831353 | |
| B 3.05889059 1.44544974 0.00669378 | |
| A 0.60211829 -1.06093922 0.00127122 | |
| A 0.56966716 0.47973329 -0.88389480 | |
| A 0.56477020 0.47699441 0.89098372 | |
| A 2.89423058 -0.52569991 -0.86988889 | |
| A 2.88881752 -0.52182571 0.89125798 | |
| A 2.72423469 1.99802663 -0.88517904 | |
| A 4.15845772 1.45737554 0.01421023 | |
| A 2.71204162 2.00483205 0.88962461 | |
| 9 | |
| B 0.96797053 -0.01219310 0.03712852 | |
| B 2.45732001 0.07634869 0.17261662 | |
| B 3.20126278 1.13572502 -0.16570673 | |
| A 0.67869402 -0.85110128 -0.61581754 | |
| A 0.54471661 0.91181994 -0.38057026 | |
| A 0.49232629 -0.19891972 1.01345648 | |
| A 2.95758301 -0.80754447 0.58493744 | |
| A 2.74826498 2.04015326 -0.58074711 | |
| A 4.28498177 1.13572165 -0.04105743 | |
| 7 | |
| B 0.98318823 0.00302913 0.01438752 | |
| B 2.43760578 0.00077500 0.00182832 | |
| B 3.65128941 -0.00043559 -0.00398891 | |
| A 0.59037348 1.03032089 0.02906828 | |
| A 0.59576925 -0.51948910 0.90133246 | |
| A 0.57943309 -0.49978425 -0.87673930 | |
| A 4.72201076 -0.00130608 -0.00807838 | |
| 8 | |
| B -0.05920440 0.87474790 -0.06163405 | |
| B -0.76054880 -0.43623157 -0.06104497 | |
| C 0.71652180 -0.38332116 -0.10884352 | |
| A -0.01756435 1.46779128 -0.97780601 | |
| A -0.06928588 1.45695877 0.86320280 | |
| A -1.23099070 -0.80076026 -0.97679165 | |
| A -1.25002057 -0.75040924 0.86420328 | |
| A 1.09557290 -0.58557574 0.82162412 | |
| 10 | |
| B 0.99851568 -0.00462126 0.00528468 | |
| B 2.52332056 0.01617598 -0.01385443 | |
| C 3.01772873 1.40240938 0.03161740 | |
| A 0.61728676 -1.03560805 0.01853973 | |
| A 0.58694446 0.49012320 -0.88884712 | |
| A 0.61763227 0.52532798 0.88954162 | |
| A 2.88460715 -0.55996332 -0.89060400 | |
| A 2.90788005 -0.50009589 0.88078080 | |
| A 2.72754636 1.89770018 -0.81671631 | |
| A 4.04047798 1.41093181 0.02678764 | |
| 6 | |
| B 0.98647308 -0.00002291 -0.00000091 | |
| B 2.44148072 -0.00000876 0.00000033 | |
| C 3.60751248 0.00002109 0.00000640 | |
| A 0.60763620 1.03029421 0.01179759 | |
| A 0.60759942 -0.52535096 0.88638192 | |
| A 0.60758811 -0.50493268 -0.89816533 | |
| 10 | |
| B 0.99473361 -0.01020972 -0.01877491 | |
| C 2.45253321 0.02462639 0.04911034 | |
| B 2.98026566 1.38421790 -0.01381381 | |
| A 0.64860759 -1.05298966 -0.04235117 | |
| A 0.56612260 0.52152103 -0.89604511 | |
| A 0.57695153 0.45771185 0.88663649 | |
| A 2.83753164 -0.52082428 -0.72456982 | |
| A 2.67825786 1.93412560 0.89152731 | |
| A 2.62901551 1.96967610 -0.89128121 | |
| A 4.07871080 1.35601480 -0.03309812 | |
| 7 | |
| B -0.11615305 0.89582221 -0.06281006 | |
| B -0.81009471 -0.40118034 -0.06316902 | |
| D 0.62563398 -0.33518528 0.01255526 | |
| A -0.00902635 1.44795992 -1.00218591 | |
| A -0.10911202 1.50110455 0.84951253 | |
| A -1.20973989 -0.79640510 -1.00275757 | |
| A -1.30982796 -0.74328596 0.84895478 | |
| 9 | |
| B 0.98680622 -0.00556068 0.00384512 | |
| B 2.50927358 0.01966334 -0.01547778 | |
| D 3.05304559 1.34611733 0.02324657 | |
| A 0.61774476 -1.04209472 0.02517547 | |
| A 0.56972738 0.47651307 -0.89423471 | |
| A 0.60027421 0.52068553 0.88771373 | |
| A 2.89022911 -0.53230218 -0.89526213 | |
| A 2.91144160 -0.47770691 0.87951913 | |
| A 2.73168755 1.81986522 -0.76397539 | |
| 7 | |
| B 0.99247987 0.01741937 -0.01355008 | |
| B 2.49414341 0.06610944 0.00915377 | |
| D 3.17309403 0.89062911 -0.57434571 | |
| A 0.66535275 -0.96243285 -0.39615644 | |
| A 0.57967416 0.82299921 -0.63114005 | |
| A 0.60911841 0.09008858 1.01672297 | |
| A 2.98212737 -0.73830286 0.62150554 | |
| 9 | |
| B 0.98729036 -0.00489977 0.00422631 | |
| D 2.40628482 0.01941219 0.00000800 | |
| B 2.90288012 1.34890404 -0.00422560 | |
| A 0.67992688 -1.05837153 0.00430684 | |
| A 0.56972709 0.49412138 -0.89181424 | |
| A 0.57522891 0.49273287 0.90359931 | |
| A 3.99851510 1.28696524 -0.00431284 | |
| A 2.57185326 1.90908978 0.89181076 | |
| A 2.57131345 1.90342581 -0.90359854 | |
| 12 | |
| B 0.34153625 1.03857962 -0.09372648 | |
| B 1.01486254 -0.33510713 0.17613063 | |
| B -0.33739712 -1.01387267 -0.17610970 | |
| B -1.03666848 0.34678097 0.09370222 | |
| A 0.59452012 1.87967860 0.56690688 | |
| A 0.48861590 1.35500735 -1.13748229 | |
| A 1.25482289 -0.45728386 1.24319677 | |
| A 1.90081240 -0.60437811 -0.41588935 | |
| A -0.38267652 -1.27933338 -1.24318636 | |
| A -0.65076215 -1.88523276 0.41587614 | |
| A -1.86226272 0.64633799 -0.56696828 | |
| A -1.37831311 0.41786337 1.13743982 | |
| 12 | |
| B 1.00830484 0.00711468 -0.07133905 | |
| B 2.51625940 -0.06194947 0.00735422 | |
| B 3.30600801 -0.73146853 -1.09255786 | |
| B 3.36606231 0.77151100 -0.92269603 | |
| A 0.61362586 0.85320471 0.51210278 | |
| A 0.54309530 -0.91373668 0.31306051 | |
| A 0.67601273 0.13757955 -1.11260087 | |
| A 2.91607814 -0.19203053 1.01705448 | |
| A 2.74768497 -1.12222934 -1.94536411 | |
| A 4.18589975 -1.31651467 -0.82273057 | |
| A 4.28700730 1.21036876 -0.53724307 | |
| A 2.84795139 1.38516054 -1.66209043 | |
| 14 | |
| B 0.95639262 -0.07346266 0.00118236 | |
| B 2.48371193 0.00778067 -0.00386041 | |
| B 3.01367094 1.44456330 0.01515929 | |
| B 4.54100360 1.52573544 0.01009677 | |
| A 0.60520325 -1.11530998 -0.01271911 | |
| A 0.52921178 0.43481182 -0.87725104 | |
| A 0.53647907 0.40867267 0.89768087 | |
| A 2.88026883 -0.51082700 -0.89450044 | |
| A 2.88742000 -0.53678977 0.86786838 | |
| A 2.61717450 1.96318352 0.90581339 | |
| A 2.60995944 1.98914980 -0.85655901 | |
| A 4.96815948 1.01751471 0.88858078 | |
| A 4.89226886 2.56755766 0.02388590 | |
| A 4.96087569 1.04347983 -0.88635773 | |
| 14 | |
| B 0.97964482 -0.01169469 0.00638349 | |
| B 2.51253780 0.01164099 -0.01159439 | |
| B 3.06181110 -0.75617544 -1.21961844 | |
| B 3.04263670 1.44999610 0.01511682 | |
| A 0.58034233 0.51014802 0.88907598 | |
| A 0.59377959 -1.04215183 0.01977554 | |
| A 0.57203289 0.48611689 -0.88887711 | |
| A 2.86914417 -0.49711494 0.90298336 | |
| A 2.73256492 -0.28735337 -2.16157028 | |
| A 2.71117932 -1.79921515 -1.22587419 | |
| A 4.16214340 -0.76956514 -1.22056606 | |
| A 2.71364642 2.00304552 -0.88007371 | |
| A 4.14263935 1.47232373 0.03536037 | |
| A 2.67729721 1.99639933 0.89765861 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import sys, math, random | |
| import numpy as np | |
| from sklearn import cross_validation | |
| from sklearn.svm import SVR | |
| from sklearn.metrics import make_scorer | |
| from sklearn.grid_search import GridSearchCV | |
| inputs_file = sys.argv[1] if len(sys.argv) > 1 else "inputs" | |
| targets_file = sys.argv[2] if len(sys.argv) > 2 else "targets" | |
| ## ---------------------------------------------------------------------------- | |
| print("Reading inputs...") | |
| with open(inputs_file) as f: | |
| cs = [] | |
| inputs_ize = f.readline() | |
| while inputs_ize: | |
| input_ = [] | |
| for i in xrange(int(inputs_ize)): | |
| line = f.readline().split() | |
| a = (line[0], np.array(line[1:], dtype=float)) | |
| input_.append(a) | |
| cs.append(input_) | |
| inputs_ize = f.readline() | |
| inputs_ = dict(zip(xrange(len(cs)), cs)) | |
| ## ---------------------------------------------------------------------------- | |
| print("Reading reference targets...") | |
| with open(targets_file) as f: | |
| lines = f.readlines() | |
| target = dict(zip(xrange(len(lines)), iter(float(e) for e in lines))) | |
| ## ---------------------------------------------------------------------------- | |
| print("Calculating eigenvalues...") | |
| def CM(input_): | |
| def c(a_i, a_j): | |
| Z = {'A': 1.0, 'B': 2.0, 'C': 3.0, 'D': 4.0} | |
| if np.array_equal(a_i[1], a_j[1]): | |
| return 0.5*math.pow(Z[a_i[0]], 2.4) | |
| else: | |
| return Z[a_i[0]] * Z[a_j[0]] / np.linalg.norm(a_i[1] - a_j[1]) | |
| return np.array([[c(a_i, a_j) for a_j in input_] for a_i in input_]) | |
| inputs_used = [(dn, inputs_[dn]) for dn in target.keys()] | |
| CMs = iter((dn, CM(input_)) for (dn, input_) in inputs_used) | |
| eigenvalues = dict(iter((dn, np.linalg.eigvals(cm)) for (dn, cm) in CMs)) | |
| max_dim = max(len(ev) for ev in eigenvalues.values()) | |
| for i in eigenvalues: | |
| eigenvalues[i] = np.lib.pad(eigenvalues[i], (0, max_dim - len(eigenvalues[i])), 'constant') | |
| ## ---------------------------------------------------------------------------- | |
| print("Preparing training/testing data...") | |
| num_folds = 5 | |
| randomized_inputs = target.keys() | |
| random.shuffle(randomized_inputs) | |
| k = 20 | |
| inputs_of_interest = randomized_inputs[:k] | |
| targets_of_interest = [(input_, target[input_]) for input_ in inputs_of_interest] | |
| # Try to ensure each fold covers the whole target range. | |
| # After grouping the inputs of interest approximately according to their target, | |
| # each of these groups is given a label to be used in the stratified k-fold | |
| # cross-validation scheme. | |
| sorted_targets = sorted(targets_of_interest, key=lambda (_, e): e) | |
| labels = iter([label] * num_folds for label in range(k / num_folds)) | |
| stratified_labels = [label for labelclass in labels for label in labelclass] | |
| skf = cross_validation.StratifiedKFold(stratified_labels, n_folds=num_folds) | |
| X = np.array([eigenvalues[input_] for (input_, _) in sorted_targets]) | |
| Y = np.array([target for (_, target) in sorted_targets]) | |
| ## ---------------------------------------------------------------------------- | |
| print("Training model...") | |
| tuned_parameters = [{'kernel': ['rbf'], 'C': np.logspace(-3, 3, 7), | |
| 'epsilon': np.logspace(-2, 2, 5)}] | |
| def mae_scorer(Y, Y_pred): | |
| return math.sqrt(np.sum((Y - Y_pred)**2) / len(Y)) | |
| my_scorer = make_scorer(mae_scorer, greater_is_better=False) | |
| scores = ['mean_squared_error', my_scorer] | |
| for score in scores: | |
| print("") | |
| print("Tuning hyper-parameters for %s" % score) | |
| print("") | |
| reg = GridSearchCV(SVR(kernel='rbf'), tuned_parameters, cv=skf, n_jobs=-1, scoring=score) | |
| reg.fit(X, Y) | |
| print("Best parameters set found on development set:") | |
| print("") | |
| print(reg.best_estimator_) | |
| print("") | |
| print("Grid scores on development set:") | |
| print("") | |
| for params, mean_score, scores in reg.grid_scores_: | |
| print("%0.3f (+/-%0.03f) for %r" | |
| % (mean_score, scores.std() / 2, params)) | |
| print("") | |
| for train, test in skf: | |
| Y_pred = reg.best_estimator_.predict(X[test]) | |
| rms_error = math.sqrt(np.sum((Y[test] - Y_pred)**2) / len(test)) | |
| ma_error = np.sum(np.absolute(Y[test] - Y_pred)) / len(test) | |
| print("RMSE: %f " % rms_error) | |
| print("MAE: %f " % ma_error) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| -18.2656438106035 | |
| -31.1744765392964 | |
| -24.7351783251961 | |
| -17.8036116284256 | |
| -37.7023801308192 | |
| -44.1444146275594 | |
| -37.8657090471788 | |
| -31.1090946857785 | |
| -31.9531454818111 | |
| -38.6094777852318 | |
| -27.2619987197509 | |
| -38.2686804639616 | |
| -28.9798776002281 | |
| -35.6903401104491 | |
| -30.0188847046984 | |
| -35.1692713055691 | |
| -50.7218554324618 | |
| -50.7428545764524 | |
| -57.1130709473027 | |
| -57.1466796410123 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment