Brief tutorial Iris classification with GraphLab
import graphlab as gl | |
iris = gl.SFrame.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=False) | |
iris.rename({'X1': 'SepalLength', 'X2': 'SepalWidth', 'X3': 'PetalLength', 'X4': 'PetalWidth', 'X5': 'Species'}) | |
train_data, test_data = iris.random_split(0.8) | |
model = gl.classifier.create(train_data, target='Species', | |
features = ['SepalLength', | |
'SepalWidth', | |
'PetalLength', | |
'PetalWidth']) | |
predictions = model.classify(test_data) | |
results = model.evaluate(test_data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment