Skip to content

Instantly share code, notes, and snippets.

Created February 26, 2013 03:55
import operator
import numpy as np
import random
from math import atan2, sin, cos, pi
import Tkinter
from PIL import ImageDraw
import Image
import ImageTk
from sys import argv
import time
def convolucion(imagen, h):
iwidth, iheight = imagen.size
imagen = imagen.convert('L')
im = imagen.load()
mheight, mwidth = h.shape
print "Imagen size: ",imagen.size
print "H: ",h.shape
g = np.zeros(shape=(iheight, iwidth))
for x in xrange(iheight):
for y in xrange(iwidth):
sum = 0.0
for j in xrange(mheight):
zj = ( j - ( mheight / 2 ) )
for i in xrange(mwidth):
zi = ( i - ( mwidth / 2 ) )
try:
sum += im[y + zi, x + zj] * h[i,j]
except:
pass
print x, y
g[x,y] = sum
print "Convolucion"
print g
return g
def filtro(original):
width, height = original.size
print width, height
original = original.convert('L')
modificado = Image.new(mode='L', size =(width,height))
org = original.load()
mod = modificado.load()
contador = 0
min = 0
max = 0
for y in xrange(height):
for x in xrange(width):
pixel = org[x,y]
if min >= pixel:
min = pixel
if max <= pixel:
max = pixel
print "MAX:",max," MIN:",min
for y in xrange(height):
for x in xrange(width):
pixel = org[x,y]
try:
pixel += org[x-1,y]
contador+=1
except:
None
try:
pixel += org[x+1,y]
contador+=1
except:
None
try:
pixel += org[x,y+1]
contador+=1
except:
None
try:
pixel += org[x,y-1]
contador+=1
except:
None
promedio = (pixel) / (contador)
r = max - min
prop = 256.0 / r
p = int((promedio -min) * prop)
if p <= 90:
mod[x,y] = 0
else:
mod[x,y] = 255
print mod[x,y]
print x,y
contador = 1
pixel = 0
data = np.array(modificado)
print data
print data.shape
im = Image.fromarray(data)
return im
def filtroPorNumeros(im,n):
for x in xrange(n):
im = filtro(im)
return im
def escalaDeGrises(im):
width, height = im.size
print width, height
im = im.convert('RGB')
pix = im.load()
promedio = 0.0
for y in xrange(height):
for x in xrange(width):
r, g, b = pix[x, y]
promedio = (r+g+b)/3.0
pix[x, y] = int(promedio), int(promedio), int(promedio)
data = np.array(im)
im2 = Image.fromarray(data)
return im2
def nuevaImagen(matriz):
height, width = matriz.shape
print matriz.shape
imagen = Image.new(mode='L', size =(width,height))
im = imagen.load()
print imagen.size
for x in xrange(height):
for y in xrange(width):
im[y, x] = matriz[x, y]
data = np.array(imagen)
print data
im = Image.fromarray(data)
return im
def binarizacion(imagen):
width, height = imagen.size
imagen = imagen.convert('L')
im = imagen.load()
for x in xrange(height):
for y in xrange(width):
pixel = im[y, x]
if pixel < 3:
im[y, x] = 0
else:
im[y, x] = 255
data = np.array(imagen)
im = Image.fromarray(data)
return im
def deteccionLinea(gx, gy, imagen, prop):
width, height = imagen.size
imagen = imagen.convert('RGB')
im = imagen.load()
freq = dict()
for x in xrange(height):
for y in xrange(width):
print "Este es x: ",x," este es y: ",y
theta = atan2(gx[x,y],gy[x,y])
print "Valor gx[%s,%s] : %s"%( x, y, gx[x,y])
print "Valor gy[%s,%s] : %s"%( x, y, gy[x,y])
p = ( x * cos( theta ) ) + ( y * sin( theta ) )
key = "%.2f %.0f"%(theta, p)
print "theta: ",theta," p: ",p
if key in freq:
freq["%.2f %.0f"%(theta, p)] += 1
else:
freq["%.2f %.0f"%(theta, p)] = 1
freq_f = dict()
freq = sorted(freq.iteritems(), key=operator.itemgetter(1))
print freq
print freq[0][0]
print freq[0][1]
k = int(len(freq) * prop)
for f in freq:
if len(freq_f) <= k:
freq_f[f[0]] = f[1]
for x in xrange(height):
for y in xrange(width):
theta = atan2(gy[x,y],gx[x,y])
p = ( x * cos( theta ) ) + ( y * sin( theta ) )
key = "%.2f %.0f"%(theta, p)
if key in freq_f:
im[y, x] = 255,0,0
print "gx: ",gx.shape
print "gx matriz: ",gx
print "gy: ",gy.shape
print "gy matriz: ",gy
print "Frecuencias: ",sorted(freq_f.iteritems(), key=operator.itemgetter(1))
data = np.array(imagen)
im = Image.fromarray(data)
return im
def main():
imagen = Image.open(argv[1])
original = imagen
escalaGrises = escalaDeGrises(imagen)
px = np.array([[-1,0,1], [-1,0,1], [-1,0,1]])
py = np.array([[1,1,1], [0,0,0], [-1,-1,-1]])
t1 = time.time()
gx = convolucion(escalaGrises, px)
gy = convolucion(escalaGrises, py)
gx_2 = gx ** 2
gy_2 = gy ** 2
g = (gx_2 + gy_2 ) ** 1.0/2.0
print g
min = np.min(g)
max = np.max(g)
h, w = g.shape
minimos = np.ones(shape=(h, w))
minimos *= min
g = g - min
print "Restando el minimo", g
g = g / (max - min)
print "Dividiendo el max-min",g
print "Max: ",np.max(g)," Min: ",np.min(g)
bn = np.ones(shape=(h, w))
bn *= 255
g = g * bn
print "Max: ",np.max(g)," Min: ",np.min(g)
imagen_nueva = nuevaImagen(g)
imagen_binaria = binarizacion(imagen_nueva)
imagen_lineas = deteccionLinea(gx, gy, imagen_binaria, float(argv[2]))
root = Tkinter.Tk()
tkimageLineas = ImageTk.PhotoImage(imagen_lineas)
Tkinter.Label(root, image = tkimageLineas).pack(side="left")
#Tkinter.Label(root, image = tkimageConvexHull).pack(side="top")
t2 =time.time()
print "Tiempo total: ",t2-t1
root.mainloop()
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment