Skip to content

Instantly share code, notes, and snippets.

Created Nov 16, 2017
Embed
What would you like to do?
Loading data
Epoch 1 Loss: 8.365036964416504 Time: 0.286663293838501
Epoch 2 Loss: 8.371975898742676 Time: 0.10914397239685059
Epoch 3 Loss: 8.254575729370117 Time: 0.10099601745605469
Epoch 4 Loss: 8.334712982177734 Time: 0.09911060333251953
Epoch 5 Loss: 8.201766014099121 Time: 0.09924697875976562
Epoch 6 Loss: 8.3384428024292 Time: 0.09900879859924316
Epoch 7 Loss: 8.170682907104492 Time: 0.0992579460144043
Epoch 8 Loss: 8.133197784423828 Time: 0.09962081909179688
Epoch 9 Loss: 8.314579963684082 Time: 0.09711265563964844
Epoch 10 Loss: 8.215376853942871 Time: 0.09447121620178223
Epoch 11 Loss: 8.165680885314941 Time: 0.09164047241210938
Epoch 12 Loss: 8.128067016601562 Time: 0.09242939949035645
Epoch 13 Loss: 8.206101417541504 Time: 0.09204912185668945
Epoch 14 Loss: 8.097738265991211 Time: 0.09250140190124512
Epoch 15 Loss: 8.041760444641113 Time: 0.09396028518676758
Epoch 16 Loss: 8.13121509552002 Time: 0.09399294853210449
Epoch 17 Loss: 8.050177574157715 Time: 0.09258008003234863
Epoch 18 Loss: 8.029860496520996 Time: 0.09215307235717773
Epoch 19 Loss: 8.044586181640625 Time: 0.09338259696960449
Epoch 20 Loss: 7.974830150604248 Time: 0.0914008617401123
Epoch 21 Loss: 8.0514554977417 Time: 0.09257221221923828
Epoch 22 Loss: 7.962815761566162 Time: 0.09533977508544922
Epoch 23 Loss: 7.918279647827148 Time: 0.09287309646606445
Epoch 24 Loss: 7.931471347808838 Time: 0.0978853702545166
Epoch 25 Loss: 7.953341007232666 Time: 0.0955507755279541
Epoch 26 Loss: 7.987057685852051 Time: 0.09621882438659668
Epoch 27 Loss: 7.8363752365112305 Time: 0.09438061714172363
Epoch 28 Loss: 7.887554168701172 Time: 0.09290814399719238
Epoch 29 Loss: 7.852166652679443 Time: 0.0920722484588623
Epoch 30 Loss: 7.825872421264648 Time: 0.09222078323364258
Epoch 31 Loss: 7.739637851715088 Time: 0.0923004150390625
Epoch 32 Loss: 7.674160957336426 Time: 0.09271025657653809
Epoch 33 Loss: 7.694534778594971 Time: 0.09295654296875
Epoch 34 Loss: 7.562588691711426 Time: 0.09230327606201172
Epoch 35 Loss: 7.7518229484558105 Time: 0.09213685989379883
Epoch 36 Loss: 7.4555511474609375 Time: 0.09305715560913086
Epoch 37 Loss: 7.385786533355713 Time: 0.09217953681945801
Epoch 38 Loss: 7.252594947814941 Time: 0.09757781028747559
Epoch 39 Loss: 7.236361503601074 Time: 0.09337186813354492
Epoch 40 Loss: 7.090780258178711 Time: 0.09296226501464844
Epoch 41 Loss: 7.114680290222168 Time: 0.0972590446472168
Epoch 42 Loss: 6.893677234649658 Time: 0.08854889869689941
Epoch 43 Loss: 6.801314353942871 Time: 0.08628273010253906
Epoch 44 Loss: 6.658290386199951 Time: 0.08944463729858398
Epoch 45 Loss: 6.670256614685059 Time: 0.08392167091369629
Epoch 46 Loss: 6.463555335998535 Time: 0.08454465866088867
Epoch 47 Loss: 6.528616428375244 Time: 0.0880279541015625
Epoch 48 Loss: 6.138576030731201 Time: 0.0847318172454834
Epoch 49 Loss: 6.193984508514404 Time: 0.08449244499206543
Epoch 50 Loss: 5.892889976501465 Time: 0.08612895011901855
Epoch 51 Loss: 5.980742931365967 Time: 0.08464670181274414
Epoch 52 Loss: 5.623549461364746 Time: 0.08573746681213379
Epoch 53 Loss: 5.646858215332031 Time: 0.0845937728881836
Epoch 54 Loss: 5.382012844085693 Time: 0.08450055122375488
Epoch 55 Loss: 5.437736988067627 Time: 0.08426022529602051
Epoch 56 Loss: 5.212170600891113 Time: 0.08485770225524902
Epoch 57 Loss: 5.170009136199951 Time: 0.0856931209564209
Epoch 58 Loss: 5.209127902984619 Time: 0.08472967147827148
Epoch 59 Loss: 4.928260326385498 Time: 0.0842905044555664
Epoch 60 Loss: 4.772708892822266 Time: 0.0848236083984375
Epoch 61 Loss: 5.025228977203369 Time: 0.08490276336669922
Epoch 62 Loss: 4.668684005737305 Time: 0.08403611183166504
Epoch 63 Loss: 4.6064372062683105 Time: 0.08566784858703613
Epoch 64 Loss: 4.439232349395752 Time: 0.08538055419921875
Epoch 65 Loss: 4.429468154907227 Time: 0.08419656753540039
Epoch 66 Loss: 4.25950288772583 Time: 0.08513092994689941
Epoch 67 Loss: 4.313199520111084 Time: 0.08470320701599121
Epoch 68 Loss: 4.205146312713623 Time: 0.08478379249572754
Epoch 69 Loss: 4.2612152099609375 Time: 0.08471989631652832
Epoch 70 Loss: 4.020537376403809 Time: 0.08415842056274414
Epoch 71 Loss: 4.022716045379639 Time: 0.08415651321411133
Epoch 72 Loss: 4.157050609588623 Time: 0.08471369743347168
Epoch 73 Loss: 3.821925163269043 Time: 0.08414292335510254
Epoch 74 Loss: 3.7741310596466064 Time: 0.08373641967773438
Epoch 75 Loss: 3.6717052459716797 Time: 0.0841670036315918
Epoch 76 Loss: 3.7262697219848633 Time: 0.08416342735290527
Epoch 77 Loss: 3.617241859436035 Time: 0.08486247062683105
Epoch 78 Loss: 3.5759634971618652 Time: 0.08480095863342285
Epoch 79 Loss: 3.696610927581787 Time: 0.08463287353515625
Epoch 80 Loss: 3.6543307304382324 Time: 0.08857965469360352
Epoch 81 Loss: 3.5534400939941406 Time: 0.08474254608154297
Epoch 82 Loss: 3.4570279121398926 Time: 0.08410239219665527
Epoch 83 Loss: 3.4379725456237793 Time: 0.08480978012084961
Epoch 84 Loss: 3.33302640914917 Time: 0.08415389060974121
Epoch 85 Loss: 3.3478479385375977 Time: 0.08457803726196289
Epoch 86 Loss: 3.146340847015381 Time: 0.08414244651794434
Epoch 87 Loss: 3.2055258750915527 Time: 0.08547520637512207
Epoch 88 Loss: 3.3564565181732178 Time: 0.08500218391418457
Epoch 89 Loss: 3.231670618057251 Time: 0.08424258232116699
Epoch 90 Loss: 3.43107271194458 Time: 0.08434176445007324
Epoch 91 Loss: 3.3208742141723633 Time: 0.08435678482055664
Epoch 92 Loss: 3.141624689102173 Time: 0.08418965339660645
Epoch 93 Loss: 2.8497495651245117 Time: 0.08527779579162598
Epoch 94 Loss: 2.8164398670196533 Time: 0.08423376083374023
Epoch 95 Loss: 2.935966968536377 Time: 0.08552289009094238
Epoch 96 Loss: 3.114004611968994 Time: 0.08542203903198242
Epoch 97 Loss: 3.1148147583007812 Time: 0.08456277847290039
Epoch 98 Loss: 2.88773512840271 Time: 0.08437108993530273
Epoch 99 Loss: 2.8572704792022705 Time: 0.08535623550415039
Epoch 100 Loss: 2.860224485397339 Time: 0.08433866500854492
real 0m13.912s
user 0m11.880s
sys 0m1.712s
@Huijun-Cui
Copy link

Huijun-Cui commented Aug 17, 2018

bullshit !!!!! pytorch is really slower than keras fuck ! waste me a alot of time

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment