Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Barcode detection from Adrian Rosebrock, updated to be compatible with OpenCV 3 (tested with OpenCV 3.0.0 and Python 2.7.9).
# This file was updated in order to support OpenCV v.3. (note lines 13, 14, 33, 43)
# import the necessary packages
import numpy as np
import cv2
def detect(image):
# convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# compute the Scharr gradient magnitude representation of the images
# in both the x and y direction
gradX = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
gradY = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1)
# subtract the y-gradient from the x-gradient
gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)
# blur and threshold the image
blurred = cv2.blur(gradient, (9, 9))
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)
# construct a closing kernel and apply it to the thresholded image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# perform a series of erosions and dilations
closed = cv2.erode(closed, None, iterations=4)
closed = cv2.dilate(closed, None, iterations=4)
# find the contours in the thresholded image
(_, cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# if no contours were found, return None
if len(cnts) == 0:
return None
# otherwise, sort the contours by area and compute the rotated
# bounding box of the largest contour
c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))
# return the bounding box of the barcode
return box
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment