-
-
Save anonymous/e70c378a1a0e907b6d27d8be09ecdfb9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np, tensorflow as tf, struct, os | |
def read_mnist(fname): | |
f = open(fname, 'rb') | |
magic, = struct.unpack('>i', f.read(4)) | |
assert (magic >> 8) == 0x08, 'Expected unsigned byte data' | |
rank = magic & 0xFF | |
shape = tuple(struct.unpack('>{}'.format('i' * rank), f.read(4 * rank))) | |
f.close() | |
return np.memmap(fname, dtype=np.uint8, mode='c', offset=4*(rank+1), shape=shape) | |
tx, ty, vx, vy = map(read_mnist, [ | |
'train-images-idx3-ubyte', 'train-labels-idx1-ubyte', | |
't10k-images-idx3-ubyte', 't10k-labels-idx1-ubyte' | |
]) | |
tx = tx / 255. | |
vx = vx / 255. | |
ty = np.array([np.array([1. if i == j else 0. for j in range(10)]) for i in ty]) | |
vy = np.array([np.array([1. if i == j else 0. for j in range(10)]) for i in vy]) | |
def reduce_sum_det(x): | |
v = tf.reshape(x, [1, -1]) | |
return tf.reshape(tf.matmul(v, tf.ones_like(v), transpose_b=True), []) | |
def compute_next_det(prev, out_size): | |
"""Given previous layer output and size of next layer, compute next layer output""" | |
w_initial = tf.random_normal([prev.get_shape().as_list()[1], out_size], 0, .01, dtype=tf.float32, seed=seed) | |
w = tf.Variable(concat_constant(w_initial, column=False, constant=0.0)) | |
return tf.nn.relu(tf.matmul(concat_constant(prev, column=True, constant=1.0), w)) | |
def concat_constant(x, column=True, constant=1.0): | |
"""Augment a matrix with an extra column or row with a constant value""" | |
constant = tf.reshape(tf.constant(constant, dtype=tf.float32), [1, 1]) | |
shape = tf.stack([tf.shape(x)[0], 1] if column else [1, tf.shape(x)[1]]) | |
tiled = tf.tile(constant, shape) | |
return tf.concat([x, tiled], 1 if column else 0) | |
seed = 1 | |
ww, hh, oo = 28, 28, 10 | |
num_hidden = 2 | |
hidden_width = 1000 | |
x = tf.placeholder(tf.float32, [None, hh*ww], name='x') | |
y = tf.placeholder(tf.float32, [None, oo], name='y') | |
current = x | |
for i in range(num_hidden): | |
current = compute_next_det(current, hidden_width) | |
o = compute_next_det(current, oo) | |
diff = o - y | |
loss = reduce_sum_det(diff*diff) / tf.cast(tf.shape(x)[0], dtype=tf.float32) | |
train = tf.train.AdamOptimizer().minimize(loss) | |
mb_size=1000 | |
with tf.Session() as sess: | |
np.random.seed(seed) | |
sess.run(tf.global_variables_initializer()) | |
sh = np.arange(len(tx)) | |
max_epochs=5 | |
vxx = np.split(vx, len(vx) / mb_size) | |
vyy = np.split(vy, len(vy) / mb_size) | |
for e in range(max_epochs): | |
np.random.shuffle(sh) | |
xs = np.split(tx[sh], len(tx) / mb_size) | |
ys = np.split(ty[sh], len(ty) / mb_size) | |
for mbx, mby in zip(xs, ys): | |
sess.run(train, feed_dict={x: mbx.reshape(mb_size, ww*hh), y: mby}) | |
correct = 0 | |
vlosses = [] | |
for vbx, vby in zip(vxx, vyy): | |
out, vloss = sess.run((o, loss), feed_dict={x: vbx.reshape(mb_size, ww*hh), y: vby}) | |
correct += np.sum(np.argmax(out, axis=1) == np.argmax(vby, axis=1)) | |
vlosses.append(vloss) | |
print('epoch = %2d correct = %4d loss = %.8f' % (e, correct, np.mean(vlosses))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment