-
-
Save antoine-levitt/bfbb83be1bd4ecdf08b4b95b05aa1a4c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using PyPlot | |
using LinearAlgebra | |
using Cuba | |
using Cubature | |
const s = 2 | |
const λTF = (4*(s+2)/s)^(s/(s+2)) | |
const RTF = (4*(s+2)/s)^(1/(s+2)) | |
const RTF_fourier = sqrt(λTF) | |
positive_part(x) = x > 0 ? x : zero(x) | |
ind(b) = b ? 1.0 : 0.0 | |
ρ_TF(r) = positive_part(λTF - r^s) / (4π) | |
function ATF(x) | |
r = norm(x) | |
r == 0 && return @SVector[0.0, 0.0] | |
@SVector[-x[2], x[1]] / (4*r^2) * (RTF^s * r^2 - 2/(s+2)*r^(s+2)) | |
end | |
function m(x, p, b) | |
r = norm(x) | |
ind(norm(p + b*ATF(x))^2 ≤ 4π*ρ_TF(norm(x))) | |
end | |
function quad_cuba(f, RTF) | |
atol = 1e-3 | |
res = cuhre(((x,out)->(out[1] = f(@SVector[-RTF + 2*RTF*x[1],-RTF + 2*RTF*x[2]]))), | |
2,1, rtol=0.0, atol=atol,maxevals=100_000, key=7) | |
res[1][1] * (2RTF)^2 | |
end | |
function marg_cuba(rp, b) | |
val = quad(x -> m(x, @SVector[rp, 0.0], b), RTF) | |
val / (2pi)^2 | |
end | |
function marg_cubature(rp, b; maxevals=500_000) | |
(val, err) = hcubature(x -> m(x, @SVector[rp, 0.0], b), [-RTF, -RTF], [RTF, RTF], reltol=1e-5, abstol=0.0, maxevals=maxevals) | |
val / (2pi)^2 | |
end | |
figure() | |
ps = range(0, 2RTF_fourier, length=100) | |
b = 1.5 | |
plot(ps, marg_cuba.(ps, b), label="cuba") | |
plot(ps, marg_cubature.(ps, b), label="cubature") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment