This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- http://stackoverflow.com/questions/40611744/well-founded-recursion-by-repeated-division | |
import Data.Nat.DivMod | |
import Order | |
data Steps: (d : Nat) -> {auto dValid: d `GTE` 2} -> (n : Nat) -> Type where | |
Base: (rem: Nat) -> (rem `GT` 0) -> (rem `LT` d) -> (quot : Nat) -> Steps d {dValid} (rem + quot * d) | |
Step: Steps d {dValid} n -> Steps d {dValid} (n * d) | |
total | |
accIndLt : {P : Nat -> Type} -> | |
(step : (x : Nat) -> ((y : Nat) -> LT y x -> P y) -> P x) -> | |
(z : Nat) -> Accessible LT z -> P z | |
accIndLt {P} step z (Access f) = | |
step z $ \y, lt => accIndLt {P} step y (f y lt) | |
total | |
wfIndLt : {P : Nat -> Type} -> | |
(step : (x : Nat) -> ((y : Nat) -> LT y x -> P y) -> P x) -> | |
(x : Nat) -> P x | |
wfIndLt step x = accIndLt step x (ltAccessible x) | |
-- n = m * d^k, where m is not divisible by d | |
total | |
steps : (n : Nat) -> {auto nValid : 0 `LT` n} -> (d : Nat) -> Steps (S (S d)) n | |
steps n {nValid} d = wfIndLt {P = P} step n d nValid | |
where | |
P : (n : Nat) -> Type | |
P n = (d : Nat) -> (nV : 0 `LT` n) -> Steps (S (S d)) n | |
step : (n : Nat) -> (rec : (q : Nat) -> q `LT` n -> P q) -> P n | |
step n rec d nV with (divMod n (S d)) | |
step (S r + q * S (S d)) rec d nV | (MkDivMod q (S r) prf) = | |
Base (S r) (LTESucc LTEZero) prf q | |
step (Z + q * S (S d)) rec d nV | (MkDivMod q Z _) = | |
let qGt0 = multLtNonZeroArgumentsLeft nV in | |
let lt = multLtSelfRight (S (S d)) qGt0 (LTESucc (LTESucc LTEZero)) in | |
Step (rec q lt d qGt0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment