Skip to content

Instantly share code, notes, and snippets.

@apaszke
Last active August 3, 2023 08:26
  • Star 70 You must be signed in to star a gist
  • Fork 7 You must be signed in to fork a gist
Star You must be signed in to star a gist
Embed
What would you like to do?
import torch
def jacobian(y, x, create_graph=False):
jac = []
flat_y = y.reshape(-1)
grad_y = torch.zeros_like(flat_y)
for i in range(len(flat_y)):
grad_y[i] = 1.
grad_x, = torch.autograd.grad(flat_y, x, grad_y, retain_graph=True, create_graph=create_graph)
jac.append(grad_x.reshape(x.shape))
grad_y[i] = 0.
return torch.stack(jac).reshape(y.shape + x.shape)
def hessian(y, x):
return jacobian(jacobian(y, x, create_graph=True), x)
def f(x):
return x * x * torch.arange(4, dtype=torch.float)
x = torch.ones(4, requires_grad=True)
print(jacobian(f(x), x))
print(hessian(f(x), x))
@guanshaoheng
Copy link

guanshaoheng commented Apr 17, 2021

Now the function torch.autograd.functional.jacobian can do the same thing, I think.


def jacobian(y, x, create_graph=False):
    # xx, yy = x.detach().numpy(), y.detach().numpy()
    jac = []
    flat_y = y.reshape(-1)
    grad_y = torch.zeros_like(flat_y)
    for i in range(len(flat_y)):
        grad_y[i] = 1.
        grad_x, = torch.autograd.grad(flat_y, x, grad_y, retain_graph=True, create_graph=True)
        jac.append(grad_x.reshape(x.shape))
        grad_y[i] = 0.
    return torch.stack(jac).reshape(y.shape + x.shape)


def hessian(y, x):
    return jacobian(jacobian(y, x, create_graph=True), x)


def f(xx):
    # y = x * x * torch.arange(4, dtype=torch.float)
    matrix = torch.tensor([[0.2618, 0.2033, 0.7280, 0.8618],
        [0.1299, 0.6498, 0.6675, 0.0527],
        [0.3006, 0.9691, 0.0824, 0.8513],
        [0.7914, 0.2796, 0.3717, 0.9483]], requires_grad=True)
    y = torch.einsum('ji, i -> j', (matrix, xx))
    return y


if __name__ == "__main__":
    # matrix = torch.rand(4, 4, requires_grad=True)
    # print(matrix)
    x = torch.arange(4,  dtype=torch.float, requires_grad=True)
    print(jacobian(f(x), x))
    grad = torch.autograd.functional.jacobian(f, x).numpy()
    # grad = grad.flatten()
    print(grad)
    # print(hessian(f(x, matrix), x))

output

        [0.1299, 0.6498, 0.6675, 0.0527],
        [0.3006, 0.9691, 0.0824, 0.8513],
        [0.7914, 0.2796, 0.3717, 0.9483]], grad_fn=<ViewBackward>)
[[0.2618 0.2033 0.728  0.8618]
 [0.1299 0.6498 0.6675 0.0527]
 [0.3006 0.9691 0.0824 0.8513]
 [0.7914 0.2796 0.3717 0.9483]]```

@AjinkyaBankar
Copy link

Hi,
I want to find a Hessian matrix for the loss function of the pre-trained neural network with respect to the parameters of the network. How can I use this method? Can someone please share an example? Thanks.

@maryamaliakbari
Copy link

Hi,
I want to find a Hessian matrix for the loss function of the pre-trained neural network with respect to the parameters of the network. How can I use this method? Can someone please share an example? Thanks.

Hi,
I am looking for the same thing. Could you figure out how we can do it?

@mil-ad
Copy link

mil-ad commented Oct 25, 2021

I think this has now been added to recent versions of torch's autograd module. Maybe look at the examples here

@maryamaliakbari
Copy link

I think this has now been added to recent versions of torch's autograd module. Maybe look at the examples here

Right. I checked it. When I use this method I am getting multiple errors. I am looking for an example or similar code to see how the implementation is done.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment