Last active
January 26, 2017 23:37
-
-
Save apaszke/38a258ba9b585d9b411ebe98f5d4f997 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Copyright (c) Alex J. Champandard, 2017. | |
# | |
import PIL.Image | |
import torch | |
from torch import nn, optim | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from torchvision.transforms import ToTensor, ToPILImage | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.benchmark = True | |
dtype = torch.cuda.FloatTensor | |
else: | |
dtype = torch.FloatTensor | |
class FeatureExtractor(nn.Module): | |
def __init__(self, num_features): | |
super(FeatureExtractor, self).__init__() | |
for i in self.kernel_range: | |
self.add_module('conv' + str(i), nn.Conv2d(3, num_features, kernel_size=i, padding=i//2)) | |
def __getitem__(self, i): | |
return getattr(self, 'conv' + str(i)) | |
@property | |
def kernel_range(self): | |
return range(3, 21, 2) | |
def forward(self, input): | |
return F.relu(torch.cat([self[i](input) for i in self.kernel_range], 1)) | |
class MultiScaleFeatureExtractor(nn.Module): | |
def __init__(self, units): | |
super(MultiScaleFeatureExtractor, self).__init__() | |
for u in units: | |
self.add_module('extractor' + str(u), FeatureExtractor(u)) | |
def forward(self, input): | |
return [child(input) for child in self.children()] | |
class StyleReproductionLoss(nn.Module): | |
def __init__(self, target): | |
super(StyleReproductionLoss, self).__init__() | |
self.target = [self.gram(t).detach() for t in target] | |
self.criterion = nn.MSELoss() | |
def gram(self, f): | |
C, H, W = f.size(1), f.size(2), f.size(3) | |
flattened = f.view(C, H * W) | |
return torch.mm(flattened, flattened.t()) | |
def backward_from(self, input): | |
total = 0.0 | |
for i, t in zip(input, self.target): | |
loss = self.criterion(self.gram(i), t) | |
loss.backward() | |
total += loss.data | |
return total | |
msfe = MultiScaleFeatureExtractor([64]) | |
msfe.type(dtype) | |
for p in msfe.parameters(): | |
p.requires_grad = False | |
target_image = PIL.Image.open('images/Sand.128.png') | |
target_size = target_image.size[::-1] | |
original = ToTensor()(target_image).add_(-0.5).type(dtype) | |
target_variable = Variable(original).view(1, -1, *target_size) | |
target_features = msfe.forward(target_variable) | |
buffer = torch.FloatTensor(1, 3, *target_size).uniform_().add_(-0.5).type(dtype) | |
source_image = Variable(buffer, requires_grad=True) | |
optimizer = optim.Adam([source_image], lr=1e-1) | |
style_reproduce = StyleReproductionLoss(target_features) | |
def evaluate(): | |
features = msfe(source_image) | |
return style_reproduce.backward_from(features) | |
for i in range(500): | |
optimizer.zero_grad() | |
loss = evaluate() | |
optimizer.step() | |
buffer.clamp_(min=-0.5, max=+0.5) | |
if i % 10 == 0: | |
img = ToPILImage()(buffer.add(0.5).view(3, *target_size).cpu()) | |
img.save('frames/%04d.png' % i) | |
print('%i %r' % (i, loss[0])) | |
img = ToPILImage()(buffer.add_(0.5).view(3, *target_size).cpu()) | |
img.save('output.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment