-
-
Save apoorvalal/06a79d3ce546d325fcd72e4113061f6e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#%% | |
library(LalRUtils) | |
load_or_install(c('tidyverse','magrittr', 'rio', 'data.table', | |
'stargazer', 'mgcv', 'glmnet', 'caret', 'ranger', 'doMC', 'e1071', | |
'parallel', 'tictoc', 'pushoverr')) | |
set.seed(42) | |
#registerDoMC(cores=4) | |
#################################################### | |
rootdir = '/home/users/apoorval/tmp/FINAL/' | |
setwd(rootdir) | |
load('TrainData.RData') | |
colnames(train_cov) = paste0('pred', 1:ncol(train_cov)) | |
traindat = cbind(train_dep, train_cov) | |
############################################################### | |
## setup | |
############################################################### | |
TrainingDataIndex <- createDataPartition(train_dep, | |
p=0.75, list = FALSE) | |
# Create Training Data | |
trainingData <- traindat[TrainingDataIndex,] | |
testData <- traindat[-TrainingDataIndex,] | |
# 10 fold CV | |
TrainingParameters <- trainControl(method = "repeatedcv", | |
number = 10, repeats=10) | |
############################################################### | |
### RANDOM FOREST | |
############################################################### | |
Rand_Tuning <- trainControl(method = "repeatedcv", | |
number = 10, repeats=10, | |
# randomise tuning parameter search | |
search = 'random') | |
tic() | |
rfModel <- train(train_dep ~ ., data = trainingData, | |
method = "ranger", | |
# ranger parallelises on all cores by default | |
# set to reasonable number | |
num.threads = 4, | |
trControl= Rand_Tuning, | |
metric = "RMSE", | |
tuneLength = 1e3, | |
#preProcess = c("scale","center"), | |
na.action = na.omit | |
) | |
toc() | |
RFPredictions <- predict(rfModel, testData) | |
RF_Diag = postResample(pred = RFPredictions, | |
obs = testData[, 1]) | |
rfModel | |
RF_Diag | |
pushover_quiet('RF done') | |
############################################################### | |
#%% Produce Predictions | |
#load('TestCovs.Rdata') | |
# save.image('PredProb.Rdata') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment