Last active
November 2, 2023 22:53
-
-
Save apoorvalal/23565bd35e98c8292b4d26237c817fd9 to your computer and use it in GitHub Desktop.
compare bias and variance properties of regression adjustment strategies https://www.degruyter.com/document/doi/10.1515/ijb-2021-0072/html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# %% | |
pacman::p_load(knitr, tidyverse, DeclareDesign, glmnet) | |
set.seed(42) | |
# %% estimator functions | |
p_hacker = function(data) { | |
fit_1 = lm_robust(Y ~ Z + X1, data = data) | |
fit_3 = lm_robust(Y ~ Z + X1 + X2, data = data) | |
fit_2 = lm_robust(Y ~ Z + X2 + X3 + X4, data = data) | |
fit_4 = lm_robust(Y ~ Z + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = data) | |
lowest_p.value_estimate <- | |
list(fit_1, fit_2, fit_3, fit_4) |> | |
map_df(tidy) |> | |
filter(term == "Z") |> | |
arrange(p.value) |> | |
slice(1) | |
} | |
prognostic_adjust = function(data) { | |
# fit a predictive model of untreated potential outcome | |
X = model.matrix(Y ~ -1 + (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)^2 , data) | |
# any good predictive model will do - lasso with all pairwise interactions here | |
mod = cv.glmnet(X[data$Z == 0,], data$Y[data$Z == 0], keep = TRUE) | |
data$prognostic_score = predict(mod, X, lambda = mod$lambda.min) | |
data$prognostic_score[data$Z == 0] = LalRUtils::fitGet(mod) # cross-fit predictions | |
# run lin regression with prognostic score as only covariate | |
lm_robust(Y ~ Z * scale(prognostic_score), data) %>% tidy %>% filter(term == "Z") | |
} | |
# %% | |
N = 500; effect_size = 0.1; r = 0.9 | |
Σ = r^toeplitz(1:10) | |
model = declare_model(N = N, | |
draw_multivariate( # covariates have decaying covariance with U controlled by r | |
c(U, X1, X2, X3, X4, X5, X6, X7, X8, X9) ~ MASS::mvrnorm(N, mu = rep(0, 10), Sigma = Σ) | |
), | |
# tau = rnorm(N, (effect_size * X2) / 10), # effect heterogeneity | |
tau = effect_size, | |
potential_outcomes(Y ~ tau * Z + U + X1 * 0.2 + X8 * X4) | |
) | |
# %% | |
inquiry = declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) | |
data_strategy = declare_assignment(Z = complete_ra(N, m = N/2)) + | |
declare_measurement(Y = reveal_outcomes(Y ~ Z)) | |
answer_strategy = declare_estimator(Y~Z, .method = lm_robust, .summary = tidy, | |
term = "Z", inquiry = "ATE", label = "DiM") + | |
declare_estimator(handler = label_estimator(p_hacker), | |
inquiry = "ATE", label = "P-hacking") + | |
declare_estimator(handler = label_estimator(prognostic_adjust), | |
inquiry = "ATE", label = "prognostic_adj") + | |
declare_estimator(Y~Z + X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, | |
.method = lm_robust, .summary = tidy, term = "Z", inquiry = "ATE", label = "lm_basic") + | |
declare_estimator(Y~Z, | |
covariates=~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, | |
.method = lm_lin, .summary = tidy, term = "Z", inquiry = "ATE", label = "lm_lin") | |
design = model + inquiry + data_strategy + answer_strategy | |
diagnosis = diagnose_design(design) | |
# %% | |
diagnosis %>% tidy() |> | |
filter(diagnosand %in% c("bias", "coverage", "rmse", "sd_estimate", "power")) |> | |
select(estimator, diagnosand, estimate) |> | |
arrange(diagnosand) |> | |
kable() | |
# %% | |
# |estimator |diagnosand | estimate| std.error| | |
# |:--------------|:-----------|--------:|---------:| | |
# |DiM |bias | 0.0166| 0.0065| | |
# |lm_basic |bias | 0.0138| 0.0049| | |
# |lm_lin |bias | 0.0141| 0.0049| | |
# |P-hacking |bias | 0.0298| 0.0057| | |
# |prognostic_adj |bias | 0.0009| 0.0018| | |
# |DiM |coverage | 0.9640| 0.0084| | |
# |lm_basic |coverage | 0.9420| 0.0098| | |
# |lm_lin |coverage | 0.9420| 0.0098| | |
# |P-hacking |coverage | 0.9220| 0.0116| | |
# |prognostic_adj |coverage | 0.9580| 0.0086| | |
# |DiM |power | 0.1360| 0.0158| | |
# |lm_basic |power | 0.2000| 0.0205| | |
# |lm_lin |power | 0.1980| 0.0201| | |
# |P-hacking |power | 0.2600| 0.0202| | |
# |prognostic_adj |power | 0.7500| 0.0206| | |
# |DiM |rmse | 0.1375| 0.0042| | |
# |lm_basic |rmse | 0.1051| 0.0031| | |
# |lm_lin |rmse | 0.1054| 0.0032| | |
# |P-hacking |rmse | 0.1244| 0.0038| | |
# |prognostic_adj |rmse | 0.0376| 0.0011| | |
# |DiM |sd_estimate | 0.1366| 0.0040| | |
# |lm_basic |sd_estimate | 0.1043| 0.0031| | |
# |lm_lin |sd_estimate | 0.1046| 0.0031| | |
# |P-hacking |sd_estimate | 0.1209| 0.0040| | |
# |prognostic_adj |sd_estimate | 0.0376| 0.0011| |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment