Skip to content

Instantly share code, notes, and snippets.

@arademaker
Last active July 30, 2022 00:29
Show Gist options
  • Save arademaker/b42a5348697dcb8b5c391f4f82d13cb3 to your computer and use it in GitHub Desktop.
Save arademaker/b42a5348697dcb8b5c391f4f82d13cb3 to your computer and use it in GitHub Desktop.
lean proof
section
constant u : Type
-- constants from MRS
constant named : u → String → Prop
constant compound : u → u → u → Prop
constant _electronics_n_1 : u → Prop
constant _people_n_of : u → u → Prop
constant _go_v_1 : u → u → Prop
constant _to_p_dir : u → u → u → Prop
constant _buy_v_1 : u → u → u → Prop
-- constants from AMR
constant store : u → Prop
constant person : u → Prop
constant electronics : u → Prop
constant buy_01 : u → Prop
constant go_02 : u → Prop
constant ARG0 : u → u → Prop
constant ARG0_of : u → u → Prop
constant ARG1 : u → u → Prop
constant ARG4 : u → u → Prop
constant ALL : u → Prop
constant mod : u → u → Prop
constant name : u → Prop
constant name1 : u → u → Prop
constant op1 : u → String → Prop
constant op2 : u → String → Prop
-- mappings
axiom s1 : ∀ e, buy_01 e ↔ ∃ x y,_buy_v_1 e x y
axiom s2 : ∀ e, go_02 e ↔ ∃ x,_go_v_1 e x
axiom s3 : electronics = _electronics_n_1
-- amr2logic
def a0 := ∃ b, (buy_01 b ∧ ∃ p, (person p ∧ ∃ g, (go_02 g ∧ ∃ s, (store s ∧ ∃ n, (name n ∧ op1 n "Apple" ∧ op2 n "Store" ∧ name1 s n)
∧ ARG4 g s ) ∧ ARG0_of p g) ∧ ∃ a, (ALL a ∧ mod p a) ∧ ARG0 b p) ∧ ∃ e,(electronics e ∧ ARG1 b e))
-- mrs2logic
def a1 := ∃ e2, ∃ i8, ∃ e9, ∃ e10, ∃ e16, ∃ x11, (∃ x17, named x17 "Apple" ∧ compound e16 x11 x17 ∧ named x11 "Store")
∧ (∃ x24, _electronics_n_1 x24 ∧ (∀ x3, (_people_n_of x3 i8 ∧ _go_v_1 e9 x3 ∧ _to_p_dir e10 e9 x11) → _buy_v_1 e2 x3 x24))
-- MRS+AMR manually simplified
def a2 := ∃ e2 i8 e9 e10 x11 x24, named x11 "Apple Store" ∧ store x11 ∧ _electronics_n_1 x24
∧ (∀ x3, (_people_n_of x3 i8 ∧ _go_v_1 e9 x3 ∧ _to_p_dir e10 e9 x11) → _buy_v_1 e2 x3 x24)
-- prenex normal form
def a21 := ∃ e2 i8 e9 e10 x11 x24, ∀ x3, named x11 "Apple Store" ∧ store x11 ∧ _electronics_n_1 x24
∧ (_people_n_of x3 i8 ∧ _go_v_1 e9 x3 ∧ _to_p_dir e10 e9 x11 → _buy_v_1 e2 x3 x24)
-- prenex conjunctive normal form
def a22 := ∃ e2 i8 e9 e10 x11 x24, ∀ x3,
(named x11 "Apple Store" ∧ store x11 ∧ _electronics_n_1 x24
∧ (¬_people_n_of x3 i8 ∨ ¬ _go_v_1 e9 x3 ∨ ¬_to_p_dir e10 e9 x11 ∨ _buy_v_1 e2 x3 x24))
theorem t1 : a2 ↔ a21 := by
unfold a2
unfold a21
apply Iff.intro
case mp =>
intro ⟨a, b, c, d, e, f, pf⟩
exists a; exists b; exists c; exists d; exists e; exists f; intro g
apply And.intro; exact And.left pf
apply And.intro; exact And.left $ And.right pf;
apply And.intro; exact And.left $ And.right $ And.right pf;
exact (And.right $ And.right $ And.right pf) g;
case mpr =>
intro ⟨a, b, c, d, e, f, pf⟩
exists a; exists b; exists c; exists d; exists e; exists f;
apply And.intro; exact And.left (pf a);
apply And.intro; exact And.left $ And.right $ pf a;
apply And.intro; exact And.left $ And.right $ And.right $ pf a;
intro g; exact And.right $ And.right $ And.right $ pf g;
theorem t2 : a2 ↔ a22 := sorry
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment