Last active
July 30, 2022 00:29
-
-
Save arademaker/b42a5348697dcb8b5c391f4f82d13cb3 to your computer and use it in GitHub Desktop.
lean proof
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
section | |
constant u : Type | |
-- constants from MRS | |
constant named : u → String → Prop | |
constant compound : u → u → u → Prop | |
constant _electronics_n_1 : u → Prop | |
constant _people_n_of : u → u → Prop | |
constant _go_v_1 : u → u → Prop | |
constant _to_p_dir : u → u → u → Prop | |
constant _buy_v_1 : u → u → u → Prop | |
-- constants from AMR | |
constant store : u → Prop | |
constant person : u → Prop | |
constant electronics : u → Prop | |
constant buy_01 : u → Prop | |
constant go_02 : u → Prop | |
constant ARG0 : u → u → Prop | |
constant ARG0_of : u → u → Prop | |
constant ARG1 : u → u → Prop | |
constant ARG4 : u → u → Prop | |
constant ALL : u → Prop | |
constant mod : u → u → Prop | |
constant name : u → Prop | |
constant name1 : u → u → Prop | |
constant op1 : u → String → Prop | |
constant op2 : u → String → Prop | |
-- mappings | |
axiom s1 : ∀ e, buy_01 e ↔ ∃ x y,_buy_v_1 e x y | |
axiom s2 : ∀ e, go_02 e ↔ ∃ x,_go_v_1 e x | |
axiom s3 : electronics = _electronics_n_1 | |
-- amr2logic | |
def a0 := ∃ b, (buy_01 b ∧ ∃ p, (person p ∧ ∃ g, (go_02 g ∧ ∃ s, (store s ∧ ∃ n, (name n ∧ op1 n "Apple" ∧ op2 n "Store" ∧ name1 s n) | |
∧ ARG4 g s ) ∧ ARG0_of p g) ∧ ∃ a, (ALL a ∧ mod p a) ∧ ARG0 b p) ∧ ∃ e,(electronics e ∧ ARG1 b e)) | |
-- mrs2logic | |
def a1 := ∃ e2, ∃ i8, ∃ e9, ∃ e10, ∃ e16, ∃ x11, (∃ x17, named x17 "Apple" ∧ compound e16 x11 x17 ∧ named x11 "Store") | |
∧ (∃ x24, _electronics_n_1 x24 ∧ (∀ x3, (_people_n_of x3 i8 ∧ _go_v_1 e9 x3 ∧ _to_p_dir e10 e9 x11) → _buy_v_1 e2 x3 x24)) | |
-- MRS+AMR manually simplified | |
def a2 := ∃ e2 i8 e9 e10 x11 x24, named x11 "Apple Store" ∧ store x11 ∧ _electronics_n_1 x24 | |
∧ (∀ x3, (_people_n_of x3 i8 ∧ _go_v_1 e9 x3 ∧ _to_p_dir e10 e9 x11) → _buy_v_1 e2 x3 x24) | |
-- prenex normal form | |
def a21 := ∃ e2 i8 e9 e10 x11 x24, ∀ x3, named x11 "Apple Store" ∧ store x11 ∧ _electronics_n_1 x24 | |
∧ (_people_n_of x3 i8 ∧ _go_v_1 e9 x3 ∧ _to_p_dir e10 e9 x11 → _buy_v_1 e2 x3 x24) | |
-- prenex conjunctive normal form | |
def a22 := ∃ e2 i8 e9 e10 x11 x24, ∀ x3, | |
(named x11 "Apple Store" ∧ store x11 ∧ _electronics_n_1 x24 | |
∧ (¬_people_n_of x3 i8 ∨ ¬ _go_v_1 e9 x3 ∨ ¬_to_p_dir e10 e9 x11 ∨ _buy_v_1 e2 x3 x24)) | |
theorem t1 : a2 ↔ a21 := by | |
unfold a2 | |
unfold a21 | |
apply Iff.intro | |
case mp => | |
intro ⟨a, b, c, d, e, f, pf⟩ | |
exists a; exists b; exists c; exists d; exists e; exists f; intro g | |
apply And.intro; exact And.left pf | |
apply And.intro; exact And.left $ And.right pf; | |
apply And.intro; exact And.left $ And.right $ And.right pf; | |
exact (And.right $ And.right $ And.right pf) g; | |
case mpr => | |
intro ⟨a, b, c, d, e, f, pf⟩ | |
exists a; exists b; exists c; exists d; exists e; exists f; | |
apply And.intro; exact And.left (pf a); | |
apply And.intro; exact And.left $ And.right $ pf a; | |
apply And.intro; exact And.left $ And.right $ And.right $ pf a; | |
intro g; exact And.right $ And.right $ And.right $ pf g; | |
theorem t2 : a2 ↔ a22 := sorry | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment