This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch.nn as nn | |
class classifier(nn.Module): | |
#define all the layers used in model | |
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, | |
bidirectional, dropout): | |
#Constructor | |
super().__init__() | |
#embedding layer | |
self.embedding = nn.Embedding(vocab_size, embedding_dim) | |
#lstm layer | |
self.lstm = nn.LSTM(embedding_dim, | |
hidden_dim, | |
num_layers=n_layers, | |
bidirectional=bidirectional, | |
dropout=dropout, | |
batch_first=True) | |
#dense layer | |
self.fc = nn.Linear(hidden_dim * 2, output_dim) | |
#activation function | |
self.act = nn.Sigmoid() | |
def forward(self, text, text_lengths): | |
#text = [batch size,sent_length] | |
embedded = self.embedding(text) | |
#embedded = [batch size, sent_len, emb dim] | |
#packed sequence | |
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths,batch_first=True) | |
packed_output, (hidden, cell) = self.lstm(packed_embedded) | |
#hidden = [batch size, num layers * num directions,hid dim] | |
#cell = [batch size, num layers * num directions,hid dim] | |
#concat the final forward and backward hidden state | |
hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1) | |
#hidden = [batch size, hid dim * num directions] | |
dense_outputs=self.fc(hidden) | |
#Final activation function | |
outputs=self.act(dense_outputs) | |
return outputs |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment