Skip to content

Instantly share code, notes, and snippets.

@arduinoboard
Last active July 29, 2018 15:18
Show Gist options
  • Save arduinoboard/7e9fa27b96e31dafb472aa2d8ac0c58a to your computer and use it in GitHub Desktop.
Save arduinoboard/7e9fa27b96e31dafb472aa2d8ac0c58a to your computer and use it in GitHub Desktop.
The file that is currently on an Arduino/Genuino Uno with a serial number of A5002rKR
// AccelStepper.cpp
//
// Copyright (C) 2009-2013 Mike McCauley
// $Id: AccelStepper.cpp,v 1.23 2016/08/09 00:39:10 mikem Exp $
#include "AccelStepper.h"
#if 0
// Some debugging assistance
void dump(uint8_t* p, int l)
{
int i;
for (i = 0; i < l; i++)
{
Serial.print(p[i], HEX);
Serial.print(" ");
}
Serial.println("");
}
#endif
void AccelStepper::moveTo(long absolute)
{
if (_targetPos != absolute)
{
_targetPos = absolute;
computeNewSpeed();
// compute new n?
}
}
void AccelStepper::move(long relative)
{
moveTo(_currentPos + relative);
}
// Implements steps according to the current step interval
// You must call this at least once per step
// returns true if a step occurred
boolean AccelStepper::runSpeed()
{
// Dont do anything unless we actually have a step interval
if (!_stepInterval)
return false;
unsigned long time = micros();
if (time - _lastStepTime >= _stepInterval)
{
if (_direction == DIRECTION_CW)
{
// Clockwise
_currentPos += 1;
}
else
{
// Anticlockwise
_currentPos -= 1;
}
step(_currentPos);
_lastStepTime = time; // Caution: does not account for costs in step()
return true;
}
else
{
return false;
}
}
long AccelStepper::distanceToGo()
{
return _targetPos - _currentPos;
}
long AccelStepper::targetPosition()
{
return _targetPos;
}
long AccelStepper::currentPosition()
{
return _currentPos;
}
// Useful during initialisations or after initial positioning
// Sets speed to 0
void AccelStepper::setCurrentPosition(long position)
{
_targetPos = _currentPos = position;
_n = 0;
_stepInterval = 0;
_speed = 0.0;
}
void AccelStepper::computeNewSpeed()
{
long distanceTo = distanceToGo(); // +ve is clockwise from curent location
long stepsToStop = (long)((_speed * _speed) / (2.0 * _acceleration)); // Equation 16
if (distanceTo == 0 && stepsToStop <= 1)
{
// We are at the target and its time to stop
_stepInterval = 0;
_speed = 0.0;
_n = 0;
return;
}
if (distanceTo > 0)
{
// We are anticlockwise from the target
// Need to go clockwise from here, maybe decelerate now
if (_n > 0)
{
// Currently accelerating, need to decel now? Or maybe going the wrong way?
if ((stepsToStop >= distanceTo) || _direction == DIRECTION_CCW)
_n = -stepsToStop; // Start deceleration
}
else if (_n < 0)
{
// Currently decelerating, need to accel again?
if ((stepsToStop < distanceTo) && _direction == DIRECTION_CW)
_n = -_n; // Start accceleration
}
}
else if (distanceTo < 0)
{
// We are clockwise from the target
// Need to go anticlockwise from here, maybe decelerate
if (_n > 0)
{
// Currently accelerating, need to decel now? Or maybe going the wrong way?
if ((stepsToStop >= -distanceTo) || _direction == DIRECTION_CW)
_n = -stepsToStop; // Start deceleration
}
else if (_n < 0)
{
// Currently decelerating, need to accel again?
if ((stepsToStop < -distanceTo) && _direction == DIRECTION_CCW)
_n = -_n; // Start accceleration
}
}
// Need to accelerate or decelerate
if (_n == 0)
{
// First step from stopped
_cn = _c0;
_direction = (distanceTo > 0) ? DIRECTION_CW : DIRECTION_CCW;
}
else
{
// Subsequent step. Works for accel (n is +_ve) and decel (n is -ve).
_cn = _cn - ((2.0 * _cn) / ((4.0 * _n) + 1)); // Equation 13
_cn = max(_cn, _cmin);
}
_n++;
_stepInterval = _cn;
_speed = 1000000.0 / _cn;
if (_direction == DIRECTION_CCW)
_speed = -_speed;
#if 0
Serial.println(_speed);
Serial.println(_acceleration);
Serial.println(_cn);
Serial.println(_c0);
Serial.println(_n);
Serial.println(_stepInterval);
Serial.println(distanceTo);
Serial.println(stepsToStop);
Serial.println("-----");
#endif
}
// Run the motor to implement speed and acceleration in order to proceed to the target position
// You must call this at least once per step, preferably in your main loop
// If the motor is in the desired position, the cost is very small
// returns true if the motor is still running to the target position.
boolean AccelStepper::run()
{
if (runSpeed())
computeNewSpeed();
return _speed != 0.0 || distanceToGo() != 0;
}
AccelStepper::AccelStepper(uint8_t interface, uint8_t pin1, uint8_t pin2, uint8_t pin3, uint8_t pin4, bool enable)
{
_interface = interface;
_currentPos = 0;
_targetPos = 0;
_speed = 0.0;
_maxSpeed = 1.0;
_acceleration = 0.0;
_sqrt_twoa = 1.0;
_stepInterval = 0;
_minPulseWidth = 1;
_enablePin = 0xff;
_lastStepTime = 0;
_pin[0] = pin1;
_pin[1] = pin2;
_pin[2] = pin3;
_pin[3] = pin4;
_enableInverted = false;
// NEW
_n = 0;
_c0 = 0.0;
_cn = 0.0;
_cmin = 1.0;
_direction = DIRECTION_CCW;
int i;
for (i = 0; i < 4; i++)
_pinInverted[i] = 0;
if (enable)
enableOutputs();
// Some reasonable default
setAcceleration(1);
}
AccelStepper::AccelStepper(void (*forward)(), void (*backward)())
{
_interface = 0;
_currentPos = 0;
_targetPos = 0;
_speed = 0.0;
_maxSpeed = 1.0;
_acceleration = 0.0;
_sqrt_twoa = 1.0;
_stepInterval = 0;
_minPulseWidth = 1;
_enablePin = 0xff;
_lastStepTime = 0;
_pin[0] = 0;
_pin[1] = 0;
_pin[2] = 0;
_pin[3] = 0;
_forward = forward;
_backward = backward;
// NEW
_n = 0;
_c0 = 0.0;
_cn = 0.0;
_cmin = 1.0;
_direction = DIRECTION_CCW;
int i;
for (i = 0; i < 4; i++)
_pinInverted[i] = 0;
// Some reasonable default
setAcceleration(1);
}
void AccelStepper::setMaxSpeed(float speed)
{
if (speed < 0.0)
speed = -speed;
if (_maxSpeed != speed)
{
_maxSpeed = speed;
_cmin = 1000000.0 / speed;
// Recompute _n from current speed and adjust speed if accelerating or cruising
if (_n > 0)
{
_n = (long)((_speed * _speed) / (2.0 * _acceleration)); // Equation 16
computeNewSpeed();
}
}
}
float AccelStepper::maxSpeed()
{
return _maxSpeed;
}
void AccelStepper::setAcceleration(float acceleration)
{
if (acceleration == 0.0)
return;
if (acceleration < 0.0)
acceleration = -acceleration;
if (_acceleration != acceleration)
{
// Recompute _n per Equation 17
_n = _n * (_acceleration / acceleration);
// New c0 per Equation 7, with correction per Equation 15
_c0 = 0.676 * sqrt(2.0 / acceleration) * 1000000.0; // Equation 15
_acceleration = acceleration;
computeNewSpeed();
}
}
void AccelStepper::setSpeed(float speed)
{
if (speed == _speed)
return;
speed = constrain(speed, -_maxSpeed, _maxSpeed);
if (speed == 0.0)
_stepInterval = 0;
else
{
_stepInterval = fabs(1000000.0 / speed);
_direction = (speed > 0.0) ? DIRECTION_CW : DIRECTION_CCW;
}
_speed = speed;
}
float AccelStepper::speed()
{
return _speed;
}
// Subclasses can override
void AccelStepper::step(long step)
{
switch (_interface)
{
case FUNCTION:
step0(step);
break;
case DRIVER:
step1(step);
break;
case FULL2WIRE:
step2(step);
break;
case FULL3WIRE:
step3(step);
break;
case FULL4WIRE:
step4(step);
break;
case HALF3WIRE:
step6(step);
break;
case HALF4WIRE:
step8(step);
break;
}
}
// You might want to override this to implement eg serial output
// bit 0 of the mask corresponds to _pin[0]
// bit 1 of the mask corresponds to _pin[1]
// ....
void AccelStepper::setOutputPins(uint8_t mask)
{
uint8_t numpins = 2;
if (_interface == FULL4WIRE || _interface == HALF4WIRE)
numpins = 4;
else if (_interface == FULL3WIRE || _interface == HALF3WIRE)
numpins = 3;
uint8_t i;
for (i = 0; i < numpins; i++)
digitalWrite(_pin[i], (mask & (1 << i)) ? (HIGH ^ _pinInverted[i]) : (LOW ^ _pinInverted[i]));
}
// 0 pin step function (ie for functional usage)
void AccelStepper::step0(long step)
{
(void)(step); // Unused
if (_speed > 0)
_forward();
else
_backward();
}
// 1 pin step function (ie for stepper drivers)
// This is passed the current step number (0 to 7)
// Subclasses can override
void AccelStepper::step1(long step)
{
(void)(step); // Unused
// _pin[0] is step, _pin[1] is direction
setOutputPins(_direction ? 0b10 : 0b00); // Set direction first else get rogue pulses
setOutputPins(_direction ? 0b11 : 0b01); // step HIGH
// Caution 200ns setup time
// Delay the minimum allowed pulse width
delayMicroseconds(_minPulseWidth);
setOutputPins(_direction ? 0b10 : 0b00); // step LOW
}
// 2 pin step function
// This is passed the current step number (0 to 7)
// Subclasses can override
void AccelStepper::step2(long step)
{
switch (step & 0x3)
{
case 0: /* 01 */
setOutputPins(0b10);
break;
case 1: /* 11 */
setOutputPins(0b11);
break;
case 2: /* 10 */
setOutputPins(0b01);
break;
case 3: /* 00 */
setOutputPins(0b00);
break;
}
}
// 3 pin step function
// This is passed the current step number (0 to 7)
// Subclasses can override
void AccelStepper::step3(long step)
{
switch (step % 3)
{
case 0: // 100
setOutputPins(0b100);
break;
case 1: // 001
setOutputPins(0b001);
break;
case 2: //010
setOutputPins(0b010);
break;
}
}
// 4 pin step function for half stepper
// This is passed the current step number (0 to 7)
// Subclasses can override
void AccelStepper::step4(long step)
{
switch (step & 0x3)
{
case 0: // 1010
setOutputPins(0b0101);
break;
case 1: // 0110
setOutputPins(0b0110);
break;
case 2: //0101
setOutputPins(0b1010);
break;
case 3: //1001
setOutputPins(0b1001);
break;
}
}
// 3 pin half step function
// This is passed the current step number (0 to 7)
// Subclasses can override
void AccelStepper::step6(long step)
{
switch (step % 6)
{
case 0: // 100
setOutputPins(0b100);
break;
case 1: // 101
setOutputPins(0b101);
break;
case 2: // 001
setOutputPins(0b001);
break;
case 3: // 011
setOutputPins(0b011);
break;
case 4: // 010
setOutputPins(0b010);
break;
case 5: // 011
setOutputPins(0b110);
break;
}
}
// 4 pin half step function
// This is passed the current step number (0 to 7)
// Subclasses can override
void AccelStepper::step8(long step)
{
switch (step & 0x7)
{
case 0: // 1000
setOutputPins(0b0001);
break;
case 1: // 1010
setOutputPins(0b0101);
break;
case 2: // 0010
setOutputPins(0b0100);
break;
case 3: // 0110
setOutputPins(0b0110);
break;
case 4: // 0100
setOutputPins(0b0010);
break;
case 5: //0101
setOutputPins(0b1010);
break;
case 6: // 0001
setOutputPins(0b1000);
break;
case 7: //1001
setOutputPins(0b1001);
break;
}
}
// Prevents power consumption on the outputs
void AccelStepper::disableOutputs()
{
if (! _interface) return;
setOutputPins(0); // Handles inversion automatically
if (_enablePin != 0xff)
{
pinMode(_enablePin, OUTPUT);
digitalWrite(_enablePin, LOW ^ _enableInverted);
}
}
void AccelStepper::enableOutputs()
{
if (! _interface)
return;
pinMode(_pin[0], OUTPUT);
pinMode(_pin[1], OUTPUT);
if (_interface == FULL4WIRE || _interface == HALF4WIRE)
{
pinMode(_pin[2], OUTPUT);
pinMode(_pin[3], OUTPUT);
}
else if (_interface == FULL3WIRE || _interface == HALF3WIRE)
{
pinMode(_pin[2], OUTPUT);
}
if (_enablePin != 0xff)
{
pinMode(_enablePin, OUTPUT);
digitalWrite(_enablePin, HIGH ^ _enableInverted);
}
}
void AccelStepper::setMinPulseWidth(unsigned int minWidth)
{
_minPulseWidth = minWidth;
}
void AccelStepper::setEnablePin(uint8_t enablePin)
{
_enablePin = enablePin;
// This happens after construction, so init pin now.
if (_enablePin != 0xff)
{
pinMode(_enablePin, OUTPUT);
digitalWrite(_enablePin, HIGH ^ _enableInverted);
}
}
void AccelStepper::setPinsInverted(bool directionInvert, bool stepInvert, bool enableInvert)
{
_pinInverted[0] = stepInvert;
_pinInverted[1] = directionInvert;
_enableInverted = enableInvert;
}
void AccelStepper::setPinsInverted(bool pin1Invert, bool pin2Invert, bool pin3Invert, bool pin4Invert, bool enableInvert)
{
_pinInverted[0] = pin1Invert;
_pinInverted[1] = pin2Invert;
_pinInverted[2] = pin3Invert;
_pinInverted[3] = pin4Invert;
_enableInverted = enableInvert;
}
// Blocks until the target position is reached and stopped
void AccelStepper::runToPosition()
{
while (run())
;
}
boolean AccelStepper::runSpeedToPosition()
{
if (_targetPos == _currentPos)
return false;
if (_targetPos >_currentPos)
_direction = DIRECTION_CW;
else
_direction = DIRECTION_CCW;
return runSpeed();
}
// Blocks until the new target position is reached
void AccelStepper::runToNewPosition(long position)
{
moveTo(position);
runToPosition();
}
void AccelStepper::stop()
{
if (_speed != 0.0)
{
long stepsToStop = (long)((_speed * _speed) / (2.0 * _acceleration)) + 1; // Equation 16 (+integer rounding)
if (_speed > 0)
move(stepsToStop);
else
move(-stepsToStop);
}
}
bool AccelStepper::isRunning()
{
return !(_speed == 0.0 && _targetPos == _currentPos);
}
// AccelStepper.h
//
/// \mainpage AccelStepper library for Arduino
///
/// This is the Arduino AccelStepper library.
/// It provides an object-oriented interface for 2, 3 or 4 pin stepper motors and motor drivers.
///
/// The standard Arduino IDE includes the Stepper library
/// (http://arduino.cc/en/Reference/Stepper) for stepper motors. It is
/// perfectly adequate for simple, single motor applications.
///
/// AccelStepper significantly improves on the standard Arduino Stepper library in several ways:
/// \li Supports acceleration and deceleration
/// \li Supports multiple simultaneous steppers, with independent concurrent stepping on each stepper
/// \li API functions never delay() or block
/// \li Supports 2, 3 and 4 wire steppers, plus 3 and 4 wire half steppers.
/// \li Supports alternate stepping functions to enable support of AFMotor (https://github.com/adafruit/Adafruit-Motor-Shield-library)
/// \li Supports stepper drivers such as the Sparkfun EasyDriver (based on 3967 driver chip)
/// \li Very slow speeds are supported
/// \li Extensive API
/// \li Subclass support
///
/// The latest version of this documentation can be downloaded from
/// http://www.airspayce.com/mikem/arduino/AccelStepper
/// The version of the package that this documentation refers to can be downloaded
/// from http://www.airspayce.com/mikem/arduino/AccelStepper/AccelStepper-1.58.zip
///
/// Example Arduino programs are included to show the main modes of use.
///
/// You can also find online help and discussion at http://groups.google.com/group/accelstepper
/// Please use that group for all questions and discussions on this topic.
/// Do not contact the author directly, unless it is to discuss commercial licensing.
/// Before asking a question or reporting a bug, please read
/// - http://en.wikipedia.org/wiki/Wikipedia:Reference_desk/How_to_ask_a_software_question
/// - http://www.catb.org/esr/faqs/smart-questions.html
/// - http://www.chiark.greenend.org.uk/~shgtatham/bugs.html
///
/// Tested on Arduino Diecimila and Mega with arduino-0018 & arduino-0021
/// on OpenSuSE 11.1 and avr-libc-1.6.1-1.15,
/// cross-avr-binutils-2.19-9.1, cross-avr-gcc-4.1.3_20080612-26.5.
/// Tested on Teensy http://www.pjrc.com/teensy including Teensy 3.1 built using Arduino IDE 1.0.5 with
/// teensyduino addon 1.18 and later.
///
/// \par Installation
///
/// Install in the usual way: unzip the distribution zip file to the libraries
/// sub-folder of your sketchbook.
///
/// \par Theory
///
/// This code uses speed calculations as described in
/// "Generate stepper-motor speed profiles in real time" by David Austin
/// http://fab.cba.mit.edu/classes/MIT/961.09/projects/i0/Stepper_Motor_Speed_Profile.pdf or
/// http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time or
/// http://web.archive.org/web/20140705143928/http://fab.cba.mit.edu/classes/MIT/961.09/projects/i0/Stepper_Motor_Speed_Profile.pdf
/// with the exception that AccelStepper uses steps per second rather than radians per second
/// (because we dont know the step angle of the motor)
/// An initial step interval is calculated for the first step, based on the desired acceleration
/// On subsequent steps, shorter step intervals are calculated based
/// on the previous step until max speed is achieved.
///
/// \par Adafruit Motor Shield V2
///
/// The included examples AFMotor_* are for Adafruit Motor Shield V1 and do not work with Adafruit Motor Shield V2.
/// See https://github.com/adafruit/Adafruit_Motor_Shield_V2_Library for examples that work with Adafruit Motor Shield V2.
///
/// \par Donations
///
/// This library is offered under a free GPL license for those who want to use it that way.
/// We try hard to keep it up to date, fix bugs
/// and to provide free support. If this library has helped you save time or money, please consider donating at
/// http://www.airspayce.com or here:
///
/// \htmlonly <form action="https://www.paypal.com/cgi-bin/webscr" method="post"><input type="hidden" name="cmd" value="_donations" /> <input type="hidden" name="business" value="mikem@airspayce.com" /> <input type="hidden" name="lc" value="AU" /> <input type="hidden" name="item_name" value="Airspayce" /> <input type="hidden" name="item_number" value="AccelStepper" /> <input type="hidden" name="currency_code" value="USD" /> <input type="hidden" name="bn" value="PP-DonationsBF:btn_donateCC_LG.gif:NonHosted" /> <input type="image" alt="PayPal — The safer, easier way to pay online." name="submit" src="https://www.paypalobjects.com/en_AU/i/btn/btn_donateCC_LG.gif" /> <img alt="" src="https://www.paypalobjects.com/en_AU/i/scr/pixel.gif" width="1" height="1" border="0" /></form> \endhtmlonly
///
/// \par Trademarks
///
/// AccelStepper is a trademark of AirSpayce Pty Ltd. The AccelStepper mark was first used on April 26 2010 for
/// international trade, and is used only in relation to motor control hardware and software.
/// It is not to be confused with any other similar marks covering other goods and services.
///
/// \par Copyright
///
/// This software is Copyright (C) 2010 Mike McCauley. Use is subject to license
/// conditions. The main licensing options available are GPL V2 or Commercial:
///
/// \par Open Source Licensing GPL V2
/// This is the appropriate option if you want to share the source code of your
/// application with everyone you distribute it to, and you also want to give them
/// the right to share who uses it. If you wish to use this software under Open
/// Source Licensing, you must contribute all your source code to the open source
/// community in accordance with the GPL Version 2 when your application is
/// distributed. See https://www.gnu.org/licenses/gpl-2.0.html
///
/// \par Commercial Licensing
/// This is the appropriate option if you are creating proprietary applications
/// and you are not prepared to distribute and share the source code of your
/// application. Purchase commercial licenses at http://airspayce.binpress.com/
///
/// \par Revision History
/// \version 1.0 Initial release
///
/// \version 1.1 Added speed() function to get the current speed.
/// \version 1.2 Added runSpeedToPosition() submitted by Gunnar Arndt.
/// \version 1.3 Added support for stepper drivers (ie with Step and Direction inputs) with _pins == 1
/// \version 1.4 Added functional contructor to support AFMotor, contributed by Limor, with example sketches.
/// \version 1.5 Improvements contributed by Peter Mousley: Use of microsecond steps and other speed improvements
/// to increase max stepping speed to about 4kHz. New option for user to set the min allowed pulse width.
/// Added checks for already running at max speed and skip further calcs if so.
/// \version 1.6 Fixed a problem with wrapping of microsecond stepping that could cause stepping to hang.
/// Reported by Sandy Noble.
/// Removed redundant _lastRunTime member.
/// \version 1.7 Fixed a bug where setCurrentPosition() did not always work as expected.
/// Reported by Peter Linhart.
/// \version 1.8 Added support for 4 pin half-steppers, requested by Harvey Moon
/// \version 1.9 setCurrentPosition() now also sets motor speed to 0.
/// \version 1.10 Builds on Arduino 1.0
/// \version 1.11 Improvments from Michael Ellison:
/// Added optional enable line support for stepper drivers
/// Added inversion for step/direction/enable lines for stepper drivers
/// \version 1.12 Announce Google Group
/// \version 1.13 Improvements to speed calculation. Cost of calculation is now less in the worst case,
/// and more or less constant in all cases. This should result in slightly beter high speed performance, and
/// reduce anomalous speed glitches when other steppers are accelerating.
/// However, its hard to see how to replace the sqrt() required at the very first step from 0 speed.
/// \version 1.14 Fixed a problem with compiling under arduino 0021 reported by EmbeddedMan
/// \version 1.15 Fixed a problem with runSpeedToPosition which did not correctly handle
/// running backwards to a smaller target position. Added examples
/// \version 1.16 Fixed some cases in the code where abs() was used instead of fabs().
/// \version 1.17 Added example ProportionalControl
/// \version 1.18 Fixed a problem: If one calls the funcion runSpeed() when Speed is zero, it makes steps
/// without counting. reported by Friedrich, Klappenbach.
/// \version 1.19 Added MotorInterfaceType and symbolic names for the number of pins to use
/// for the motor interface. Updated examples to suit.
/// Replaced individual pin assignment variables _pin1, _pin2 etc with array _pin[4].
/// _pins member changed to _interface.
/// Added _pinInverted array to simplify pin inversion operations.
/// Added new function setOutputPins() which sets the motor output pins.
/// It can be overridden in order to provide, say, serial output instead of parallel output
/// Some refactoring and code size reduction.
/// \version 1.20 Improved documentation and examples to show need for correctly
/// specifying AccelStepper::FULL4WIRE and friends.
/// \version 1.21 Fixed a problem where desiredSpeed could compute the wrong step acceleration
/// when _speed was small but non-zero. Reported by Brian Schmalz.
/// Precompute sqrt_twoa to improve performance and max possible stepping speed
/// \version 1.22 Added Bounce.pde example
/// Fixed a problem where calling moveTo(), setMaxSpeed(), setAcceleration() more
/// frequently than the step time, even
/// with the same values, would interfere with speed calcs. Now a new speed is computed
/// only if there was a change in the set value. Reported by Brian Schmalz.
/// \version 1.23 Rewrite of the speed algorithms in line with
/// http://fab.cba.mit.edu/classes/MIT/961.09/projects/i0/Stepper_Motor_Speed_Profile.pdf
/// Now expect smoother and more linear accelerations and decelerations. The desiredSpeed()
/// function was removed.
/// \version 1.24 Fixed a problem introduced in 1.23: with runToPosition, which did never returned
/// \version 1.25 Now ignore attempts to set acceleration to 0.0
/// \version 1.26 Fixed a problem where certina combinations of speed and accelration could cause
/// oscillation about the target position.
/// \version 1.27 Added stop() function to stop as fast as possible with current acceleration parameters.
/// Also added new Quickstop example showing its use.
/// \version 1.28 Fixed another problem where certain combinations of speed and accelration could cause
/// oscillation about the target position.
/// Added support for 3 wire full and half steppers such as Hard Disk Drive spindle.
/// Contributed by Yuri Ivatchkovitch.
/// \version 1.29 Fixed a problem that could cause a DRIVER stepper to continually step
/// with some sketches. Reported by Vadim.
/// \version 1.30 Fixed a problem that could cause stepper to back up a few steps at the end of
/// accelerated travel with certain speeds. Reported and patched by jolo.
/// \version 1.31 Updated author and distribution location details to airspayce.com
/// \version 1.32 Fixed a problem with enableOutputs() and setEnablePin on Arduino Due that
/// prevented the enable pin changing stae correctly. Reported by Duane Bishop.
/// \version 1.33 Fixed an error in example AFMotor_ConstantSpeed.pde did not setMaxSpeed();
/// Fixed a problem that caused incorrect pin sequencing of FULL3WIRE and HALF3WIRE.
/// Unfortunately this meant changing the signature for all step*() functions.
/// Added example MotorShield, showing how to use AdaFruit Motor Shield to control
/// a 3 phase motor such as a HDD spindle motor (and without using the AFMotor library.
/// \version 1.34 Added setPinsInverted(bool pin1Invert, bool pin2Invert, bool pin3Invert, bool pin4Invert, bool enableInvert)
/// to allow inversion of 2, 3 and 4 wire stepper pins. Requested by Oleg.
/// \version 1.35 Removed default args from setPinsInverted(bool, bool, bool, bool, bool) to prevent ambiguity with
/// setPinsInverted(bool, bool, bool). Reported by Mac Mac.
/// \version 1.36 Changed enableOutputs() and disableOutputs() to be virtual so can be overridden.
/// Added new optional argument 'enable' to constructor, which allows you toi disable the
/// automatic enabling of outputs at construction time. Suggested by Guido.
/// \version 1.37 Fixed a problem with step1 that could cause a rogue step in the
/// wrong direction (or not,
/// depending on the setup-time requirements of the connected hardware).
/// Reported by Mark Tillotson.
/// \version 1.38 run() function incorrectly always returned true. Updated function and doc so it returns true
/// if the motor is still running to the target position.
/// \version 1.39 Updated typos in keywords.txt, courtesey Jon Magill.
/// \version 1.40 Updated documentation, including testing on Teensy 3.1
/// \version 1.41 Fixed an error in the acceleration calculations, resulting in acceleration of haldf the intended value
/// \version 1.42 Improved support for FULL3WIRE and HALF3WIRE output pins. These changes were in Yuri's original
/// contribution but did not make it into production.<br>
/// \version 1.43 Added DualMotorShield example. Shows how to use AccelStepper to control 2 x 2 phase steppers using the
/// Itead Studio Arduino Dual Stepper Motor Driver Shield model IM120417015.<br>
/// \version 1.44 examples/DualMotorShield/DualMotorShield.ino examples/DualMotorShield/DualMotorShield.pde
/// was missing from the distribution.<br>
/// \version 1.45 Fixed a problem where if setAcceleration was not called, there was no default
/// acceleration. Reported by Michael Newman.<br>
/// \version 1.45 Fixed inaccuracy in acceleration rate by using Equation 15, suggested by Sebastian Gracki.<br>
/// Performance improvements in runSpeed suggested by Jaakko Fagerlund.<br>
/// \version 1.46 Fixed error in documentation for runToPosition().
/// Reinstated time calculations in runSpeed() since new version is reported
/// not to work correctly under some circumstances. Reported by Oleg V Gavva.<br>
/// \version 1.48 2015-08-25
/// Added new class MultiStepper that can manage multiple AccelSteppers,
/// and cause them all to move
/// to selected positions at such a (constant) speed that they all arrive at their
/// target position at the same time. Suitable for X-Y flatbeds etc.<br>
/// Added new method maxSpeed() to AccelStepper to return the currently configured maxSpeed.<br>
/// \version 1.49 2016-01-02
/// Testing with VID28 series instrument stepper motors and EasyDriver.
/// OK, although with light pointers
/// and slow speeds like 180 full steps per second the motor movement can be erratic,
/// probably due to some mechanical resonance. Best to accelerate through this speed.<br>
/// Added isRunning().<br>
/// \version 1.50 2016-02-25
/// AccelStepper::disableOutputs now sets the enable pion to OUTPUT mode if the enable pin is defined.
/// Patch from Piet De Jong.<br>
/// Added notes about the fact that AFMotor_* examples do not work with Adafruit Motor Shield V2.<br>
/// \version 1.51 2016-03-24
/// Fixed a problem reported by gregor: when resetting the stepper motor position using setCurrentPosition() the
/// stepper speed is reset by setting _stepInterval to 0, but _speed is not
/// reset. this results in the stepper motor not starting again when calling
/// setSpeed() with the same speed the stepper was set to before.
/// \version 1.52 2016-08-09
/// Added MultiStepper to keywords.txt.
/// Improvements to efficiency of AccelStepper::runSpeed() as suggested by David Grayson.
/// Improvements to speed accuracy as suggested by David Grayson.
/// \version 1.53 2016-08-14
/// Backed out Improvements to speed accuracy from 1.52 as it did not work correctly.
/// \version 1.54 2017-01-24
/// Fixed some warnings about unused arguments.
/// \version 1.55 2017-01-25
/// Fixed another warning in MultiStepper.cpp
/// \version 1.56 2017-02-03
/// Fixed minor documentation error with DIRECTION_CCW and DIRECTION_CW. Reported by David Mutterer.
/// Added link to Binpress commercial license purchasing.
/// \version 1.57 2017-03-28
/// _direction moved to protected at the request of Rudy Ercek.
/// setMaxSpeed() and setAcceleration() now correct negative values to be positive.
/// \version 1.58 2018-04-13
/// Add initialisation for _enableInverted in constructor.
///
/// \author Mike McCauley (mikem@airspayce.com) DO NOT CONTACT THE AUTHOR DIRECTLY: USE THE LISTS
// Copyright (C) 2009-2013 Mike McCauley
// $Id: AccelStepper.h,v 1.27 2016/08/14 10:26:54 mikem Exp mikem $
#ifndef AccelStepper_h
#define AccelStepper_h
#include <stdlib.h>
#if ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#include <wiring.h>
#endif
// These defs cause trouble on some versions of Arduino
#undef round
/////////////////////////////////////////////////////////////////////
/// \class AccelStepper AccelStepper.h <AccelStepper.h>
/// \brief Support for stepper motors with acceleration etc.
///
/// This defines a single 2 or 4 pin stepper motor, or stepper moter with fdriver chip, with optional
/// acceleration, deceleration, absolute positioning commands etc. Multiple
/// simultaneous steppers are supported, all moving
/// at different speeds and accelerations.
///
/// \par Operation
/// This module operates by computing a step time in microseconds. The step
/// time is recomputed after each step and after speed and acceleration
/// parameters are changed by the caller. The time of each step is recorded in
/// microseconds. The run() function steps the motor once if a new step is due.
/// The run() function must be called frequently until the motor is in the
/// desired position, after which time run() will do nothing.
///
/// \par Positioning
/// Positions are specified by a signed long integer. At
/// construction time, the current position of the motor is consider to be 0. Positive
/// positions are clockwise from the initial position; negative positions are
/// anticlockwise. The current position can be altered for instance after
/// initialization positioning.
///
/// \par Caveats
/// This is an open loop controller: If the motor stalls or is oversped,
/// AccelStepper will not have a correct
/// idea of where the motor really is (since there is no feedback of the motor's
/// real position. We only know where we _think_ it is, relative to the
/// initial starting point).
///
/// \par Performance
/// The fastest motor speed that can be reliably supported is about 4000 steps per
/// second at a clock frequency of 16 MHz on Arduino such as Uno etc.
/// Faster processors can support faster stepping speeds.
/// However, any speed less than that
/// down to very slow speeds (much less than one per second) are also supported,
/// provided the run() function is called frequently enough to step the motor
/// whenever required for the speed set.
/// Calling setAcceleration() is expensive,
/// since it requires a square root to be calculated.
///
/// Gregor Christandl reports that with an Arduino Due and a simple test program,
/// he measured 43163 steps per second using runSpeed(),
/// and 16214 steps per second using run();
class AccelStepper
{
public:
/// \brief Symbolic names for number of pins.
/// Use this in the pins argument the AccelStepper constructor to
/// provide a symbolic name for the number of pins
/// to use.
typedef enum
{
FUNCTION = 0, ///< Use the functional interface, implementing your own driver functions (internal use only)
DRIVER = 1, ///< Stepper Driver, 2 driver pins required
FULL2WIRE = 2, ///< 2 wire stepper, 2 motor pins required
FULL3WIRE = 3, ///< 3 wire stepper, such as HDD spindle, 3 motor pins required
FULL4WIRE = 4, ///< 4 wire full stepper, 4 motor pins required
HALF3WIRE = 6, ///< 3 wire half stepper, such as HDD spindle, 3 motor pins required
HALF4WIRE = 8 ///< 4 wire half stepper, 4 motor pins required
} MotorInterfaceType;
/// Constructor. You can have multiple simultaneous steppers, all moving
/// at different speeds and accelerations, provided you call their run()
/// functions at frequent enough intervals. Current Position is set to 0, target
/// position is set to 0. MaxSpeed and Acceleration default to 1.0.
/// The motor pins will be initialised to OUTPUT mode during the
/// constructor by a call to enableOutputs().
/// \param[in] interface Number of pins to interface to. Integer values are
/// supported, but it is preferred to use the \ref MotorInterfaceType symbolic names.
/// AccelStepper::DRIVER (1) means a stepper driver (with Step and Direction pins).
/// If an enable line is also needed, call setEnablePin() after construction.
/// You may also invert the pins using setPinsInverted().
/// AccelStepper::FULL2WIRE (2) means a 2 wire stepper (2 pins required).
/// AccelStepper::FULL3WIRE (3) means a 3 wire stepper, such as HDD spindle (3 pins required).
/// AccelStepper::FULL4WIRE (4) means a 4 wire stepper (4 pins required).
/// AccelStepper::HALF3WIRE (6) means a 3 wire half stepper, such as HDD spindle (3 pins required)
/// AccelStepper::HALF4WIRE (8) means a 4 wire half stepper (4 pins required)
/// Defaults to AccelStepper::FULL4WIRE (4) pins.
/// \param[in] pin1 Arduino digital pin number for motor pin 1. Defaults
/// to pin 2. For a AccelStepper::DRIVER (interface==1),
/// this is the Step input to the driver. Low to high transition means to step)
/// \param[in] pin2 Arduino digital pin number for motor pin 2. Defaults
/// to pin 3. For a AccelStepper::DRIVER (interface==1),
/// this is the Direction input the driver. High means forward.
/// \param[in] pin3 Arduino digital pin number for motor pin 3. Defaults
/// to pin 4.
/// \param[in] pin4 Arduino digital pin number for motor pin 4. Defaults
/// to pin 5.
/// \param[in] enable If this is true (the default), enableOutputs() will be called to enable
/// the output pins at construction time.
AccelStepper(uint8_t interface = AccelStepper::FULL4WIRE, uint8_t pin1 = 2, uint8_t pin2 = 3, uint8_t pin3 = 4, uint8_t pin4 = 5, bool enable = true);
/// Alternate Constructor which will call your own functions for forward and backward steps.
/// You can have multiple simultaneous steppers, all moving
/// at different speeds and accelerations, provided you call their run()
/// functions at frequent enough intervals. Current Position is set to 0, target
/// position is set to 0. MaxSpeed and Acceleration default to 1.0.
/// Any motor initialization should happen before hand, no pins are used or initialized.
/// \param[in] forward void-returning procedure that will make a forward step
/// \param[in] backward void-returning procedure that will make a backward step
AccelStepper(void (*forward)(), void (*backward)());
/// Set the target position. The run() function will try to move the motor (at most one step per call)
/// from the current position to the target position set by the most
/// recent call to this function. Caution: moveTo() also recalculates the speed for the next step.
/// If you are trying to use constant speed movements, you should call setSpeed() after calling moveTo().
/// \param[in] absolute The desired absolute position. Negative is
/// anticlockwise from the 0 position.
void moveTo(long absolute);
/// Set the target position relative to the current position
/// \param[in] relative The desired position relative to the current position. Negative is
/// anticlockwise from the current position.
void move(long relative);
/// Poll the motor and step it if a step is due, implementing
/// accelerations and decelerations to acheive the target position. You must call this as
/// frequently as possible, but at least once per minimum step time interval,
/// preferably in your main loop. Note that each call to run() will make at most one step, and then only when a step is due,
/// based on the current speed and the time since the last step.
/// \return true if the motor is still running to the target position.
boolean run();
/// Poll the motor and step it if a step is due, implementing a constant
/// speed as set by the most recent call to setSpeed(). You must call this as
/// frequently as possible, but at least once per step interval,
/// \return true if the motor was stepped.
boolean runSpeed();
/// Sets the maximum permitted speed. The run() function will accelerate
/// up to the speed set by this function.
/// Caution: the maximum speed achievable depends on your processor and clock speed.
/// \param[in] speed The desired maximum speed in steps per second. Must
/// be > 0. Caution: Speeds that exceed the maximum speed supported by the processor may
/// Result in non-linear accelerations and decelerations.
void setMaxSpeed(float speed);
/// returns the maximum speed configured for this stepper
/// that was previously set by setMaxSpeed();
/// \return The currently configured maximum speed
float maxSpeed();
/// Sets the acceleration/deceleration rate.
/// \param[in] acceleration The desired acceleration in steps per second
/// per second. Must be > 0.0. This is an expensive call since it requires a square
/// root to be calculated. Dont call more ofthen than needed
void setAcceleration(float acceleration);
/// Sets the desired constant speed for use with runSpeed().
/// \param[in] speed The desired constant speed in steps per
/// second. Positive is clockwise. Speeds of more than 1000 steps per
/// second are unreliable. Very slow speeds may be set (eg 0.00027777 for
/// once per hour, approximately. Speed accuracy depends on the Arduino
/// crystal. Jitter depends on how frequently you call the runSpeed() function.
void setSpeed(float speed);
/// The most recently set speed
/// \return the most recent speed in steps per second
float speed();
/// The distance from the current position to the target position.
/// \return the distance from the current position to the target position
/// in steps. Positive is clockwise from the current position.
long distanceToGo();
/// The most recently set target position.
/// \return the target position
/// in steps. Positive is clockwise from the 0 position.
long targetPosition();
/// The currently motor position.
/// \return the current motor position
/// in steps. Positive is clockwise from the 0 position.
long currentPosition();
/// Resets the current position of the motor, so that wherever the motor
/// happens to be right now is considered to be the new 0 position. Useful
/// for setting a zero position on a stepper after an initial hardware
/// positioning move.
/// Has the side effect of setting the current motor speed to 0.
/// \param[in] position The position in steps of wherever the motor
/// happens to be right now.
void setCurrentPosition(long position);
/// Moves the motor (with acceleration/deceleration)
/// to the target position and blocks until it is at
/// position. Dont use this in event loops, since it blocks.
void runToPosition();
/// Runs at the currently selected speed until the target position is reached
/// Does not implement accelerations.
/// \return true if it stepped
boolean runSpeedToPosition();
/// Moves the motor (with acceleration/deceleration)
/// to the new target position and blocks until it is at
/// position. Dont use this in event loops, since it blocks.
/// \param[in] position The new target position.
void runToNewPosition(long position);
/// Sets a new target position that causes the stepper
/// to stop as quickly as possible, using the current speed and acceleration parameters.
void stop();
/// Disable motor pin outputs by setting them all LOW
/// Depending on the design of your electronics this may turn off
/// the power to the motor coils, saving power.
/// This is useful to support Arduino low power modes: disable the outputs
/// during sleep and then reenable with enableOutputs() before stepping
/// again.
/// If the enable Pin is defined, sets it to OUTPUT mode and clears the pin to disabled.
virtual void disableOutputs();
/// Enable motor pin outputs by setting the motor pins to OUTPUT
/// mode. Called automatically by the constructor.
/// If the enable Pin is defined, sets it to OUTPUT mode and sets the pin to enabled.
virtual void enableOutputs();
/// Sets the minimum pulse width allowed by the stepper driver. The minimum practical pulse width is
/// approximately 20 microseconds. Times less than 20 microseconds
/// will usually result in 20 microseconds or so.
/// \param[in] minWidth The minimum pulse width in microseconds.
void setMinPulseWidth(unsigned int minWidth);
/// Sets the enable pin number for stepper drivers.
/// 0xFF indicates unused (default).
/// Otherwise, if a pin is set, the pin will be turned on when
/// enableOutputs() is called and switched off when disableOutputs()
/// is called.
/// \param[in] enablePin Arduino digital pin number for motor enable
/// \sa setPinsInverted
void setEnablePin(uint8_t enablePin = 0xff);
/// Sets the inversion for stepper driver pins
/// \param[in] directionInvert True for inverted direction pin, false for non-inverted
/// \param[in] stepInvert True for inverted step pin, false for non-inverted
/// \param[in] enableInvert True for inverted enable pin, false (default) for non-inverted
void setPinsInverted(bool directionInvert = false, bool stepInvert = false, bool enableInvert = false);
/// Sets the inversion for 2, 3 and 4 wire stepper pins
/// \param[in] pin1Invert True for inverted pin1, false for non-inverted
/// \param[in] pin2Invert True for inverted pin2, false for non-inverted
/// \param[in] pin3Invert True for inverted pin3, false for non-inverted
/// \param[in] pin4Invert True for inverted pin4, false for non-inverted
/// \param[in] enableInvert True for inverted enable pin, false (default) for non-inverted
void setPinsInverted(bool pin1Invert, bool pin2Invert, bool pin3Invert, bool pin4Invert, bool enableInvert);
/// Checks to see if the motor is currently running to a target
/// \return true if the speed is not zero or not at the target position
bool isRunning();
protected:
/// \brief Direction indicator
/// Symbolic names for the direction the motor is turning
typedef enum
{
DIRECTION_CCW = 0, ///< Counter-Clockwise
DIRECTION_CW = 1 ///< Clockwise
} Direction;
/// Forces the library to compute a new instantaneous speed and set that as
/// the current speed. It is called by
/// the library:
/// \li after each step
/// \li after change to maxSpeed through setMaxSpeed()
/// \li after change to acceleration through setAcceleration()
/// \li after change to target position (relative or absolute) through
/// move() or moveTo()
void computeNewSpeed();
/// Low level function to set the motor output pins
/// bit 0 of the mask corresponds to _pin[0]
/// bit 1 of the mask corresponds to _pin[1]
/// You can override this to impment, for example serial chip output insted of using the
/// output pins directly
virtual void setOutputPins(uint8_t mask);
/// Called to execute a step. Only called when a new step is
/// required. Subclasses may override to implement new stepping
/// interfaces. The default calls step1(), step2(), step4() or step8() depending on the
/// number of pins defined for the stepper.
/// \param[in] step The current step phase number (0 to 7)
virtual void step(long step);
/// Called to execute a step using stepper functions (pins = 0) Only called when a new step is
/// required. Calls _forward() or _backward() to perform the step
/// \param[in] step The current step phase number (0 to 7)
virtual void step0(long step);
/// Called to execute a step on a stepper driver (ie where pins == 1). Only called when a new step is
/// required. Subclasses may override to implement new stepping
/// interfaces. The default sets or clears the outputs of Step pin1 to step,
/// and sets the output of _pin2 to the desired direction. The Step pin (_pin1) is pulsed for 1 microsecond
/// which is the minimum STEP pulse width for the 3967 driver.
/// \param[in] step The current step phase number (0 to 7)
virtual void step1(long step);
/// Called to execute a step on a 2 pin motor. Only called when a new step is
/// required. Subclasses may override to implement new stepping
/// interfaces. The default sets or clears the outputs of pin1 and pin2
/// \param[in] step The current step phase number (0 to 7)
virtual void step2(long step);
/// Called to execute a step on a 3 pin motor, such as HDD spindle. Only called when a new step is
/// required. Subclasses may override to implement new stepping
/// interfaces. The default sets or clears the outputs of pin1, pin2,
/// pin3
/// \param[in] step The current step phase number (0 to 7)
virtual void step3(long step);
/// Called to execute a step on a 4 pin motor. Only called when a new step is
/// required. Subclasses may override to implement new stepping
/// interfaces. The default sets or clears the outputs of pin1, pin2,
/// pin3, pin4.
/// \param[in] step The current step phase number (0 to 7)
virtual void step4(long step);
/// Called to execute a step on a 3 pin motor, such as HDD spindle. Only called when a new step is
/// required. Subclasses may override to implement new stepping
/// interfaces. The default sets or clears the outputs of pin1, pin2,
/// pin3
/// \param[in] step The current step phase number (0 to 7)
virtual void step6(long step);
/// Called to execute a step on a 4 pin half-steper motor. Only called when a new step is
/// required. Subclasses may override to implement new stepping
/// interfaces. The default sets or clears the outputs of pin1, pin2,
/// pin3, pin4.
/// \param[in] step The current step phase number (0 to 7)
virtual void step8(long step);
/// Current direction motor is spinning in
/// Protected because some peoples subclasses need it to be so
boolean _direction; // 1 == CW
private:
/// Number of pins on the stepper motor. Permits 2 or 4. 2 pins is a
/// bipolar, and 4 pins is a unipolar.
uint8_t _interface; // 0, 1, 2, 4, 8, See MotorInterfaceType
/// Arduino pin number assignments for the 2 or 4 pins required to interface to the
/// stepper motor or driver
uint8_t _pin[4];
/// Whether the _pins is inverted or not
uint8_t _pinInverted[4];
/// The current absolution position in steps.
long _currentPos; // Steps
/// The target position in steps. The AccelStepper library will move the
/// motor from the _currentPos to the _targetPos, taking into account the
/// max speed, acceleration and deceleration
long _targetPos; // Steps
/// The current motos speed in steps per second
/// Positive is clockwise
float _speed; // Steps per second
/// The maximum permitted speed in steps per second. Must be > 0.
float _maxSpeed;
/// The acceleration to use to accelerate or decelerate the motor in steps
/// per second per second. Must be > 0
float _acceleration;
float _sqrt_twoa; // Precomputed sqrt(2*_acceleration)
/// The current interval between steps in microseconds.
/// 0 means the motor is currently stopped with _speed == 0
unsigned long _stepInterval;
/// The last step time in microseconds
unsigned long _lastStepTime;
/// The minimum allowed pulse width in microseconds
unsigned int _minPulseWidth;
/// Is the direction pin inverted?
///bool _dirInverted; /// Moved to _pinInverted[1]
/// Is the step pin inverted?
///bool _stepInverted; /// Moved to _pinInverted[0]
/// Is the enable pin inverted?
bool _enableInverted;
/// Enable pin for stepper driver, or 0xFF if unused.
uint8_t _enablePin;
/// The pointer to a forward-step procedure
void (*_forward)();
/// The pointer to a backward-step procedure
void (*_backward)();
/// The step counter for speed calculations
long _n;
/// Initial step size in microseconds
float _c0;
/// Last step size in microseconds
float _cn;
/// Min step size in microseconds based on maxSpeed
float _cmin; // at max speed
};
/// @example Random.pde
/// Make a single stepper perform random changes in speed, position and acceleration
/// @example Overshoot.pde
/// Check overshoot handling
/// which sets a new target position and then waits until the stepper has
/// achieved it. This is used for testing the handling of overshoots
/// @example MultipleSteppers.pde
/// Shows how to multiple simultaneous steppers
/// Runs one stepper forwards and backwards, accelerating and decelerating
/// at the limits. Runs other steppers at the same time
/// @example ConstantSpeed.pde
/// Shows how to run AccelStepper in the simplest,
/// fixed speed mode with no accelerations
/// @example Blocking.pde
/// Shows how to use the blocking call runToNewPosition
/// Which sets a new target position and then waits until the stepper has
/// achieved it.
/// @example AFMotor_MultiStepper.pde
/// Control both Stepper motors at the same time with different speeds
/// and accelerations.
/// @example AFMotor_ConstantSpeed.pde
/// Shows how to run AccelStepper in the simplest,
/// fixed speed mode with no accelerations
/// @example ProportionalControl.pde
/// Make a single stepper follow the analog value read from a pot or whatever
/// The stepper will move at a constant speed to each newly set posiiton,
/// depending on the value of the pot.
/// @example Bounce.pde
/// Make a single stepper bounce from one limit to another, observing
/// accelrations at each end of travel
/// @example Quickstop.pde
/// Check stop handling.
/// Calls stop() while the stepper is travelling at full speed, causing
/// the stepper to stop as quickly as possible, within the constraints of the
/// current acceleration.
/// @example MotorShield.pde
/// Shows how to use AccelStepper to control a 3-phase motor, such as a HDD spindle motor
/// using the Adafruit Motor Shield http://www.ladyada.net/make/mshield/index.html.
/// @example DualMotorShield.pde
/// Shows how to use AccelStepper to control 2 x 2 phase steppers using the
/// Itead Studio Arduino Dual Stepper Motor Driver Shield
/// model IM120417015
#endif
#include "AccelStepper.h"
#define DIR_PIN 4
#define PWM_PIN 3
#define SLIDE_EN 7
#define STEPPER_EN 9
#define POT_PIN A0
#define POS_AVG 20
#define POS_MARGIN 50
#define MAX_PWM 255
#define INDEX 8
#define CURRENT_SENSE A0
#define LINEAR_UPDATE_RATE 20 //ms before update
#define STEPPER_UPDATE_RATE 50000 //updates per second
int targetPos = 30;
int lastTargetPos = 0;
int maxWorkingPWM = 255;
int location = 0;
boolean moving = false;
unsigned long rampTimer = millis();
unsigned long linearTimer = millis();
//unsigned long positionStepTimer = millis();
//int positionStep = 0;
int linearPositions[6] = {750,825,750,0,0,825}; //{0,50,550,825,825}; //825 is the limit
int rotationPositions[6] = {9333,0,0,-1750,21000,21000}; //{0,0,21000,21000,0};
//int positionMapOne[5][3] = {{500,100,0},{2000,500,0},{3000,600,0},{5000,700,10500},{8000,900,21000}};
AccelStepper stepper(AccelStepper::DRIVER, 10, 11); // Defaults to AccelStepper::FULL4WIRE (4 pins) on 2, 3, 4, 5
bool sentLinear=false;
void setup() {
tcConfigure(STEPPER_UPDATE_RATE);
tcStartCounter();
stepper.setPinsInverted(0,0,1);
stepper.setEnablePin(9);
pinMode(DIR_PIN, OUTPUT);
pinMode(PWM_PIN, OUTPUT);
pinMode(SLIDE_EN, OUTPUT);
pinMode(STEPPER_EN, OUTPUT);
pinMode(INDEX, INPUT_PULLUP);
digitalWrite(PWM_PIN, LOW);
digitalWrite(STEPPER_EN, LOW);
SerialUSB.begin(115200);
delay(1000);
stepper.setMaxSpeed(4000);
stepper.setAcceleration(6000);
homeStepper();
stepper.setMaxSpeed(3000);
stepper.setAcceleration(1500);
stepper.moveTo(0);
digitalWrite(SLIDE_EN, LOW);
}
void loop() {
String serialString;
if (SerialUSB.available() > 0) {
serialString = SerialUSB.readStringUntil('\n');
if (serialString=="who"){
SerialUSB.print("driver");//(driver, passenger, steering)
}else if(serialString=="dGetDist"){//
sendDist();
}else if(serialString=="dGetRota"){//
sendRot();
}else if(serialString.startsWith("dSetDist")){
goToDist(serialString.substring(8).toInt());
}else if(serialString.startsWith("dSetRota")){
goToRot(serialString.substring(8).toInt());
}
}
updateLinear();
if (stepper.distanceToGo() == 0){
digitalWrite(STEPPER_EN, HIGH);
//sendRot();//send final rotation, maybe we don't need
}else{
digitalWrite(STEPPER_EN, LOW);
}
}
void goToDist(int sentDist){
if(sentDist<=825 && sentDist>=0)
targetPos = sentDist;
else if(sentDist<0){
targetPos=0;
}else if(sentDist>825){
targetPos=825;
}
sentLinear=true;
}
void goToRot(int sentRot){
stepper.moveTo(sentRot*116.67);//42K steps/revolution
}
void sendDist(){
SerialUSB.print("dd");//driver distance
SerialUSB.println(getDistance());
}
void sendRot(){
SerialUSB.print("dr");//driver distance
//SerialUSB.println(getRotation());
}
int getDistance(){
//update distance here
return checkPosition();
}
/*
int getRotation(){
//update rotation here
return stepper.currentPosition();
}
*/
int checkPosition(){
int averagedPosition = 0;
for (int i=0; i < POS_AVG; i++){
averagedPosition += analogRead(POT_PIN);
// stepper.run();
}
averagedPosition /= POS_AVG;
return averagedPosition;
}
void moveLinear(boolean dir, int PWMspeed){
digitalWrite(DIR_PIN, dir);
analogWrite(PWM_PIN, PWMspeed);
}
void updateLinear(){
if ((millis() - linearTimer) > LINEAR_UPDATE_RATE){
int currentPos = checkPosition();
int posError = currentPos - targetPos;
int pwmValue = 0;
if (!moving){
if (targetPos != lastTargetPos){ //ramp up
rampTimer = millis();
lastTargetPos = targetPos;
}
}
if (abs(posError) > POS_MARGIN) {
maxWorkingPWM = (((millis() - rampTimer) * MAX_PWM)/1000) + 60;
// SerialUSB.println(maxWorkingPWM);
if (maxWorkingPWM > MAX_PWM) maxWorkingPWM = MAX_PWM;
if (abs(posError) > 200) pwmValue = maxWorkingPWM;
else pwmValue = map(abs(posError), 0, 200, 60, maxWorkingPWM);
if (posError > 0) digitalWrite(DIR_PIN, LOW);
else digitalWrite(DIR_PIN, HIGH);
moving = true;
}
else {
if (moving){
pwmValue = map(abs(posError), 0, 200, 60, maxWorkingPWM);
if (abs(posError) < (POS_MARGIN/3)) {
moving = false;
pwmValue = 0;
//sendDist();//finished, send the distance, maybe we don't need
}
}
}
// SerialUSB.print("Pos: ");
// SerialUSB.print(currentPos);
// SerialUSB.print(" Target: ");
// SerialUSB.print(targetPos);
// SerialUSB.print(" Error: ");
// SerialUSB.print(posError);
// SerialUSB.print(" PWM: ");
// SerialUSB.println(pwmValue);
analogWrite(PWM_PIN, pwmValue);
linearTimer = millis();
}
}
void homeStepper(){
tcDisable();
SerialUSB.println("Homing stepper");
stepper.setSpeed(2000);
while (digitalRead(INDEX)){
stepper.runSpeed();
}
stepper.setCurrentPosition(0);
stepper.stop();
SerialUSB.println("Found Home, Zero Set");
delay(1000);
tcStartCounter();
}
void TC5_Handler (void) {
tcDisable();
stepper.run();
tcStartCounter();
TC5->COUNT16.INTFLAG.bit.MC0 = 1; //don't change this, it's part of the timer code
}
//Configures the TC to generate output events at the sample frequency.
//Configures the TC in Frequency Generation mode, with an event output once
//each time the audio sample frequency period expires.
void tcConfigure(int sampleRate)
{
// Enable GCLK for TCC2 and TC5 (timer counter input clock)
GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(GCM_TC4_TC5)) ;
while (GCLK->STATUS.bit.SYNCBUSY);
tcReset(); //reset TC5
// Set Timer counter Mode to 16 bits
TC5->COUNT16.CTRLA.reg |= TC_CTRLA_MODE_COUNT16;
// Set TC5 mode as match frequency
TC5->COUNT16.CTRLA.reg |= TC_CTRLA_WAVEGEN_MFRQ;
//set prescaler and enable TC5
TC5->COUNT16.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV1 | TC_CTRLA_ENABLE;
//set TC5 timer counter based off of the system clock and the user defined sample rate or waveform
TC5->COUNT16.CC[0].reg = (uint16_t) (SystemCoreClock / sampleRate - 1);
while (tcIsSyncing());
// Configure interrupt request
NVIC_DisableIRQ(TC5_IRQn);
NVIC_ClearPendingIRQ(TC5_IRQn);
NVIC_SetPriority(TC5_IRQn, 0);
NVIC_EnableIRQ(TC5_IRQn);
// Enable the TC5 interrupt request
TC5->COUNT16.INTENSET.bit.MC0 = 1;
while (tcIsSyncing()); //wait until TC5 is done syncing
}
//Function that is used to check if TC5 is done syncing
//returns true when it is done syncing
bool tcIsSyncing()
{
return TC5->COUNT16.STATUS.reg & TC_STATUS_SYNCBUSY;
}
//This function enables TC5 and waits for it to be ready
void tcStartCounter()
{
TC5->COUNT16.CTRLA.reg |= TC_CTRLA_ENABLE; //set the CTRLA register
while (tcIsSyncing()); //wait until snyc'd
}
//Reset TC5
void tcReset()
{
TC5->COUNT16.CTRLA.reg = TC_CTRLA_SWRST;
while (tcIsSyncing());
while (TC5->COUNT16.CTRLA.bit.SWRST);
}
//disable TC5
void tcDisable()
{
TC5->COUNT16.CTRLA.reg &= ~TC_CTRLA_ENABLE;
while (tcIsSyncing());
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment